تعیین مناطق مستعد فرسایش خندقی با استفاده از تابع عضویت فازی(مطالعه موردی:شهر مهر در جنوب استان فارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 کارشناس ارشد سنجش از دور و GIS، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خوزستان.

3 دانشیار بخش مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز

چکیده

فرسایش خندقی از انواع فرسایش آبی است که رخداد و گسترش آن موجب تغییرات بارز در منظر زمین و پسرفت اراضی و تخریب محیط زیست می‌شود. این نوع فرسایش با توجه به ابعاد نسبتا وسیع، توسعه سریع و تولید رسوب، سبب تخریب گسترده اراضی می‌گردد. برای کنترل این پدیده شناخت مکان‌هایی که مستعد ایجاد این نوع فرسایش هستند، بسیار مهم می‌باشد. با توجه به اهمیت موضوع هدف از این مطالعه تعیین مناطق مستعد فرسایش خندقی شهر مهر در جنوب استان فارس با استفاده از توابع عضویت فازی و مدل تحلیل سلسله مراتبی می‌باشد. برای این منظور ابتدا با استفاده از توابع عضویت، نقشه‌های فازی برای هر یک از پارامترها تهیه شد. در ادامه با استفاده از روش AHP وزن هر یک از پارامترها به منظور تهیه نقشه نهایی مناطق مستعد فرسایش خندقی تعیین شد. نتایج حاصل از روش فازی و AHP نشان داد که مناطق واقع در مرکز (حدود 15 درصد) دارای حساسیت بیشتری نسبت به فرسایش خندقی می‌باشند. در انتها برای اعتبار سنجی مدل از منحنی ROC استفاده شد. نتایج نشان داد که در مناطقی که مستعد فرسایش خندقی هستند خندق‌های بزرگی در منطقه دیده شده است. و مقادیر AUC نزدیک به 85 بدست آمد که نشان‌دهنده دقت بالای مدل برای پیش‌بینی نواحی مستعد فرسایش خندقی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Determining areas prone to gully erosion using fuzzy membership function(Case study: Mohr City in the south of Fars province)

نویسندگان [English]

  • Kazem Rangzan 1
  • zeinab zaheri Abdehvand 2
  • Marzieh Mokarram 3
1 Associate Professor, Department of Remote Sensing and GIS, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Agriculture and Natural Resources Research Center of Khuzestan
3 Associate Professor, Department of Range and Watershed Management, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran,
چکیده [English]

Introduction
Among the various types of water erosion, gully erosion is one of the most important events affecting soil destruction, landscape change, loss of water resources and land regression (Poison et al., 2003) that occurs under certain environmental conditions. This type of erosion is an evolved form of furrow erosion that forms at the beginning of valleys or on slopes and plains and cut sections (roads and canals) (Tucker, 2005). This type of erosion occurs widely in arid and semi-arid regions (Frankl, 2012). There are various methods for determining areas prone to gully erosion, that the Multiple-criteria decision-making (MCDM) method is one of the most recently used methods. Arabameri et al. (2020) used MCEM to determine areas prone to gully erosion in the Dasjard River watershed in Iran. The results showed that machine learning (ML) method in GIS environment is a suitable method for determining erosion sensitive areas. Hembram and Saha (2020) used the fuzzy-AHP and compound factor (CF) methods to determine areas prone to gully erosion in the Jainti River basin in India. The results showed that both methods have good accuracy for predicting erosion. Choubin et al. (2019) used the fuzzy analytical network process (Fuzzy ANP) method to determine areas prone to gully erosion in Kashkan-Poldokhtar Basin, Iran. The results showed that drainage density, soil texture and lithology are the most important factors of watershed erosion in the study area. Couple hybrid algorithms of a commonly used base classifier (reduced pruning error tree, REPTree) with AdaBoost (AB), bagging (Bag), and random subspace (RS) were used to determine areas prone to ditch erosion by Nhu et al. (2020). The results showed that the RS-REPTree hybrid model has high accuracy in determining erosion in Shoor River watershed in Iran. One of the areas in Iran that has undergone land use changes in recent decades is the city of Mohr in the south of Fars province.This area is located on erosion-sensitive soils, which has recently led to large gully in the area. Due to the importance of the subject in this study, areas prone to erosion have been identified using the fuzzy method and AHP and the necessary solutions to prevent the progression of this erosion have been presented.

Methodology
In order to prepare the areas prone map to gully erosion were used aspect data, CL, Dd, elevation, TPI, geology, land use, LS, curvature plan, TRI, profile curvature, rainfall, distance to river, distance to road, TWI, slope, soil , SPI, NDVI as input data. After preparing zoning maps for each of the parameters, the fuzzy membership function was used to prepare fuzzy maps for each of the parameters. In this study to prepare a fuzzy map of slope, distance to road, TRI, soil, altitude, TWI, LU, SPI, LS, direction, distance to river from incremental linear membership function. For other parameters, the decremental linear membership function was used (Arabamari et al., 2020). Then, to prepare the final map of areas prone to gully erosion, using AHP method, a two-by-two comparison of each parameter was performed based on the degree of importance of each of them.
Then, using Expert choices software, the qualitative results became quantitative and finally the weight of each parameter was determined.

Results and Discussion
The results of AHP method showed that lithology has the highest impact (weight 0.2) and LS has the lowest impact (weight .002) in mapping areas prone to gully erosion. The results of fuzzy and AHP methods showed that the areas located in the center (about 15%) of the study area are more sensitive to erosion. The results also showed that large gully erosion have been seen in the areas that are prone to gully erosion. Therefore, the AUC values were close to 85%, which indicates the high accuracy of the model for predicting areas prone to gully erosion.
Gully erosion created in the region is a serious threat to rural and agricultural lands in this region. In fact, with human interventions in erosion-sensitive areas, it leads to the progression of erosion and loss of satisfaction (Arabameri et al., 2019). Land use as a variable is very effective in spreading gully erosion. Rijsdijk et al. (2006) in a study of Java ditches in Indonesia concluded that changes in land use and improper plowing were the cause of the increase in ditches in this area.

Conclusion
The results showed that the areas located in the center of the study area are more prone to gully erosion than other sections. In this study, it was found that land use changes have led to intensification of erosion in the region. So that with the increase of agricultural and residential lands in the study area, the rate of gully erosion has increased. Therefore, it is important to use soil protection operations to control and prevent the progression of gully erosion in this area.

کلیدواژه‌ها [English]

  • Gully Erosion
  • fuzzy and AHP methods
  • south of Fars province
  • احمدی، ح.،1390، ژئومورفولوژی کاربردی جلد اول، انتشارات دانشگاه تهران ،ص 266.
  • داوودی مقدم، د.، حقی­زاده، ع. 1399، شناسایی مناطق مستعد فرسایش خندقی و تعیین مهمترین عوامل موثر بر وقوع آن، هفتمین همایش علمی پژوهشی توسعه و ترویج علوم کشاورزی و منابع طبیعی ایران، تهران، صص 68-53.
  • سلیمان­پور، م.، صوفی، م، روستا، ج، شادفر، ص، جوکار، ل، کشاورزی، ح. 1399. بررسی روند پیشروی خندق­های دائمی در حوضه آبخیز خرم بید استان فارس، نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز، صفحات 329-318 ، جلد 21 ، شماره 2.
  • صمدنژاد، ع.، 1381، بررسی علل اصلی ایجاد فرسایش آبکندی در استان فارس، پایان نامه کارشتاسی ارشد، دانشگاه تربیت مدرس، دانشکده منابع طبیعی، 68 ص.
  • صوفی، م.، 1389، بررسی تاثیر انواع کاربری اراضی بر گسترش آبکندها در برخی مناطق استان فارس، چهارمین همایش ملی فرسایش و رسوب.
  • غلامی، م.، احمدی،م، محمودی،م. 1396. تحلیل محدودیت­های ژئومورفولوژیکی در گسترش کالبدی شهر با تاکید بر فرسایش خندقی(مطالعه موردی: شهر مهر در جنوب استان فارس)،مجله مخاطرات محیط طبیعی، سال ششم، شماره دوازدهم، ص 124-105.
  • Arabameri, A., Blaschke, T., Pradhan, B., Pourghasemi, H.R., Tiefenbacher, J.P. & Bui, D.T. 2020. Evaluation of recent advanced soft computing techniques for gully erosion susceptibility mapping: A comparative study. Sensors, 20(2), p.335.
  • Arabameri, A., Chen, W., Loche, M., Zhao, X., Li, Y., Lombardo, L., Cerda, A., Pradhan, B. & Bui, D.T. 2020. Comparison of machine learning models for gully erosion susceptibility mapping. Geoscience Frontiers, 11(5), pp.1609-1620.
  • Arabameri, A., Pradhan, B. & Rezaei, K. 2019. Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Journal of environmental management, 232, pp.928-942
  • Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H.R. & Lombardo, L. 2018. Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degradation & Development, 29(11), pp.4035-4049
  • Azareh, A., Rahmati, O., Rafiei-Sardooi, E., Sankey, J.B., Lee, S., Shahabi, H. & Ahmad, B.B., 2019. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Science of the Total Environment, 655, pp.684-696
  • Bertolini, M, M, Braglia, (2006). Application of the AHP methodology in making a proposal for a public work contract, 17 January.
  • -Bouchnak, H., Felfoul, M. S., Rached Boussema, M. & Habib Snane, M. 2009. Slope and Rainfall Effects on The Volume of Sediment Yield by Gully Erosion in The Souar Lithologic Formation (Tunisia), Catena, v. 78 , p. 170–17
  • Cheng, H., Wu, Y., Zou, X., Si, H., Zhao, Y., Liu, D. & Yue, X. 2006. Study of Ephemeral Gully Erosion in a Small Upland Catchment on The InnerMongolian Plateau, Soil & Tillage Research, v. 90. p. 184–19
  • Choubin, B., Rahmati, O., Tahmasebipour, N., Feizizadeh, B. & Pourghasemi, H.R. 2019. Application of fuzzy analytical network process model for analyzing the gully erosion susceptibility. In Natural hazards gis-based spatial modeling using data mining techniques (pp. 105-125). Springer, Cham
  • Conoscenti, C., Agnesi, V., Cama, M., CaraballoArias, N.A. and Rotigliano, E., 2018. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land degradation & development, 29(3), pp.724-736
  • Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J. & Mashauri, D.A. 2014. Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67, pp.145-152
  • Frankl, A., (2012). Gully development and its spatio-temporal variability since the late 19th century in the northern Ethiopian Highlands,AFRIKA FOCUS, volume 25, No 2,pp 121-131
  • Hembram, T.K., & Saha, S. 2020. Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environment, Development and Sustainability, 22(2), pp.1241-1268
  • Imasuen, O.I., Omali, A.O. & Ibrahim, I. 2011. Assessment of environmental impacts and remedies for gully erosion in Ankpa Metropolis and environs, Kogi State, Nigeria. Advances in Applied Science Research, 2(5), pp.372-384
  • Lesschen, J. P., kok, K., Verburg, P. H. & Cammreaa, L. H. 2007. Identification of vulnerable areas for Gully erosion Under Different Scenarios of land Abandonment in Southeast Spain, Catena, v. 71, p.110-121
  • Lin, C.T., Chiu, H. & Tseng, Y.H., 2006. Agility evaluation using fuzzy logic. International Journal of Production Economics, 101(2), pp.353-368
  • Moore, I.D., Burch, G.J. 1988. Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resour. Res. 22, 1350–1360.
  • Poeson, J. et al., (2003). Gully Erosion and Environment Change, Importance and Research Needs,Catena,50,pp 91-133
  • Rijsdijk, A., Bruijnzeel, L. A. S. & prins, T. M. 2006. Sediment Yield from Gullies, Riparian Mass Wasting and Bank Erosion in the Upper Konto Catchment, East Java, Indonesia, Geomorphology, v. 87, p. 38-52
  • Saha, S., Gayen, A., Pourghasemi, H.R. and Tiefenbacher, J.P. 2019. Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environmental Earth Sciences, 78(23), p.649
  • Schmitt, A., & et al., (2006). Time and scale of gully erosion in the jediczny dol gully system, south-east Poland, geomorphology, No: 101, pp. 192-208.
  • Strunk, H. 2003. Soil degradation and overland flow as causes of gully erosion on mountain pastures and in forests. Catena, 50(2-4), pp.185-198
  • Tucker,G.E. (2005). Implications of bank failures and fluvial erosion for gully development :Field Study and modeling. Journal of Geophysical Research, TOC ,Volume 110, Issue F1 March 2005,pages 1-23
  • Valizadeh-Gh, Z., & Khorram, E. 2015. Linear fractional multi-objective optimization problems subject to fuzzy relational equations with the max-average composition. Applied and Computational Mathematics, 4(1-2), pp.20-30
  • Vandekrckrckove, L. J., & Poesen, G. 2003. Medium Term Gully Head Cut Rates in Southeast Spain Determined From Aerial Photographs and Groud Measurements, Catena, v. 50, p. 329- 357.
  • Zucca,C.,Canu,A.,Della Peruta,R.,2006.Effects of Land usr and Landscape on Spatial distribution and mor phological feature of gullies in an agro-pastoral area in Sardina(Italy). Catena88,87-95.