ارزیابی تغییرات مورفولوژیکی و خطر سیلاب رودخانه گیوی چای با استفاده از شاخص های ژئومورفومتری و مدل HEC-RAS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه جغرافیای طبیعی، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل.

2 دانش آموخته دکتری ژئومورفولوژی از دانشگاه تبریز.

3 دانش آموخته دکتری ژئومورفولوژی از دانشگاه تبریز

10.22034/gmpj.2021.290177.1281

چکیده

در پژوهش حاضر به ارزیابی مورفولوژیکی و شبیه‌سازی سیلاب‌های رودخانه گیوی‌چای، واقع در استان اردبیل، پرداخته می‌شود. بدین منظور از شاخص‌های ضریب خمیدگی، زاویه مرکزی و ترانسکت استفاده به عمل آمد. برای شبیه‌سازی سیلاب رودخانه نیز مدل HEC-RAS در بستر GIS به کار گرفته شد. نتایج نشان می‌دهند که الگوی رودخانه گیوی‌چای از نوع مئاندری توسعه یافته می‌باشد اما بسته به شرایط زمین‌شناختی، ژئومورفولوژیکی و آنتروپوژنیک از تغییرپذیری مکانی زیادی برخوردار است. الگوی رودخانه در بازه اول (بازه خلخال) در کنترل عوامل انسانی می‌باشد. در این بازه میانگین تغییرات عرضی درحدود 406/0 هکتار بوده است. الگوی رودخانه در بازه دوم (بازه گیوی) نیز از نوع مئاندری توسعه یافته می‌باشد. در طی 18 سال گذشته مقادیر ضریب خمیدگی و زاویه مرکزی در محدوده این بازه افزایش یافته است. در این بازه میانگین تغییرات عرضی در طی سال‌های 2002 تا 2020 میلادی درحدود 406/0 هکتار بوده است. در بازه سوم (بازه فیروزآباد) مجرای رودخانه از پتانسیل بالایی برای تغییرات جانبی برخوردار است. میانگین تغییرات جانبی در محدوده این بازه به 319/1 هکتار افزایش پیدا می‌کند. مجرای رودخانه در بازه چهارم به دلیل عرض محدود دره و مقاوم بودن مواد کناره از کمترین میزان تحرک جانبی برخوردار می‌باشد. شبیه‌سازی سیلاب با استفاده از مدل HEC-RAS نشان‌دهنده تغییرپذیری مکانی بالای خطر سیلاب در امتداد رودخانه است. این تغییرپذیری از شرایط ژئومورفولوژیکی متغیر در امتداد رودخانه نشات می‌گیرد. نتایج نشان می-دهد که سیلاب‌های با دوره بازگشت کمتر از 10 سال مخاطره‌ای جدی را متوجه جوامع انسانی ساکن در مجاورت رودخانه گیوی‌چای نمی‌سازند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Morphological Changes and Flood Hazard of Kivi Chay River Using Geomorphometric Indices and HEC-RAS Model

نویسندگان [English]

  • Fariba Esfandiary Darabad 1
  • Mansour Kheirizadeh 2
  • masoud rahimi 3
1 University of Mohaghegh Ardabili
2 tabriz university
3 tabriz university
چکیده [English]

Extended Abstract

Introduction
Floods are one of the most abundant and destructive natural disasters that every year are caused heavy losses of life and property. Due to human activity in river systems and construction in rivers, flood damage has an upward trend. At the same time, a flood is a very complex phenomenon that connects the natural environment, people, and the social systems of their organization. Kivi Chay River is one of the flood rivers in Ardabil province, which requires comprehensive studies on flood hazards and morphological changes channel. In this research, the morphology and flood risk along the Kivi Chay River located in the south of Ardabil province are evaluated. In this regard, geomorphic quantitative indices and HEC-RAS model are used.

Methodology
The most important data of the present study include topographic map scale of 1: 2000 (Ardabil Regional Water Authority), Topographic map scale of 1: 50,000, geological maps scale of 1: 100,000, digital elevation model (DEM) 12.5 meter from ALOS – PALSAR satellite, Aster Satellite images 2002 (Spatial resolution of 15 meter) Sentinel Satellite images 2020 (Spatial resolution of 10 meter) and Google Earth. In this study, GIS & RS software includes Google Earth, ENVI and Arc GIS software with HEC-GeoRAS and Planform Statistics extensions was used. Also, hydrometric stations data from Istiso, Firoozabad and synoptic stations data of Khalkhal, Firoozabad were used. In order to evaluate the planform and lateral channel changes of Kivi Chay River channel, indices of curvature coefficient, central angle and transect method were used. The transect method was also used to evaluate the lateral change of the river channel. The HEC-RAS model could calculate the water surface profile in stable flow gradual variable in rivers and artificial channels in the subcritical, supercritical and complex regimes. The calculation of water surface profile carried out from one cross section to other cross, step by step, solving energy equation in standard way(HEC, 2010).

Results and Discussion
- Evaluation of Kivi Chay River channel planform using morphometric indices
In this study Kivi Chay River was divided into four reaches. In order to evaluate the planform and lateral channel changes of Kivi Chay River channel, indices of curvature coefficient, central angle were used. The average central angle for the Kivi Chay River channel was calculated to be 103.5 degrees for 2002 and 105.5 degrees for 2020. The length of the river was calculated to be 77.12 km for 2002 and 78.43 km for 2020.The average curvature index was calculated to be 1.28 for 2002 and 1.31 for 2020.

-Evaluation of lateral channel changes of Kivi Chay River using transect method
The average value of transect index in reach (1) is about 0.579 hectares. The area of Land degradation within this reach during the period 2002 to 2020 is about 6.95 hectares. In reach (2), the average change is about 0.406 hectares. Interval (3) is the most dynamic reach of Kivi Chay River in terms of lateral changes. In reach (4) the least amount of lateral changes occurred. The average lateral change of the channel along this reach is about 0.24 hectares.

-Evaluation of flood risk in Kivi Chay River
The results show that floods with a return period of less than 10 years do not a serious risk to human communities living in the Kivi Chay River banks. These floods mainly affect the agricultural lands along the river banks. The results also show that the parts of Khalkhal City center could be affected by floods with a return period of 25 years.

Conclusion
The results of morphological indices show that the planform of Kivi Chay River channel is developed meanders type. However, based on geological, geomorphological and anthropogenic characteristics, there is a lot of spatial variability in the river palanform. The palnform of the river in the first reache is mainly in the control of human factors. In this reache, the lateral change average was about 0.406 hectares. The river planform in the second reache is also of developed meanders type. Over the past 18 years, the values of the curvature coefficient and the central angle have increased in this reache. In this reache, the lateral change average during the years 2002 to 2020 was about 0.406 hectares. In the Third reache, The width of floodplain is significantly increased. In this reache, the lateral change average was about 1.319 hectares. Lateral change in the fourth reache, due to the limited width of the valley and bankful materials resistance, it has the least lateral mobility. In this research, ArcGIS software was used for spatial modeling of the Kivi Chay River from the HEC-GeoRAS extension. Simulation of Kivi Chay River flood using HEC-RAS hydrodynamic model shows very high spatial variability of flood risk along this river.

کلیدواژه‌ها [English]

  • flood
  • morphology. HEC-RAS model
  • kivi chay river
ارزنلو، ا.، 1394. بررسی شکست سد خاکی شهر چای ارومیه ناشی از روگذری جریان و پهنه‌بندی سیلاب با استفاده از مدل HEC- RAS و GIS، پایان‌نامه کارشناسی ارشد، سازه‌های هیدرولیکی، دانشگاه ارومیه.
خیری­زاده آروق، م.، 1395. تحلیل مورفودینامیک و تغییرات جانبی مجرای رودخانه زرینه­رود (از شاهین­دژ تا دریاچه ارومیه). رساله دکتری، دانشکده جغرافیا و برنامه­ریزی، دانشگاه تبریز.
رضایی مقدم، م. ح.، ثروتی، م. ر، و اصغری سراسکانرود، ا.، 1391. بررسی الگوی پیچان­رودی رودخانه قزل­اوزن با استفاده از شاخص­های ضریب خمیدگی و زاویه مرکزی، جغرافیا (فصلنامه علمی- پژوهشی انجمن جغرافیای ایران)، سال دهم، شماره 34، صص 102-85.
رضایی مقدم، م. ح.، خیری زاده، م، و رحیمی، م.، 1395. بررسی جابجایی جانبی مجرای رودخانه ارس از سال 1379 تا 1393 (از 15 کیلومتری غرب شهر اصلاندوز تا خروج رودخانه از محدوده سیاسی ایران)، جغرافیا وبرنامه ریزی محیطی، دوره 27، شماره 3، صص 32-15.
رضایی مقدم، م. ح.، رجبی، م.، دانشفراز، ر، و خیری­زاده، م.، 1395. پهنه‌بندی و بررسی اثرات مورفولوژیکی سیلاب‌های رودخانه زرینه‌رود، جغرافیا و مخاطرات محیطی، دوره 5، شماره 1، شماره پیاپی 17، صص 17-1.
رضایی مقدم، م. ح.، یاسی، م.، نیک­جو، م. ر، و رحیمی، م.، ۱۳97. پهنه‌بندی و تحلیل مورفولوژیکی سیلاب‌های رودخانه قره‌سو با استفاده از مدل هیدرودینامیکی HEC-RAS (از روستای پیرازمیان تا تلاقی رودخانه اهر چای)، جغرافیا و مخاطرات محیطی، شماره 25، صص 15-1.
غفاری، گ، و امینی، ع.، 1389. مدیریت دشت­های سیلابی با استفاده از سیستم اطلاعات جغرافیایی (GIS) (مطالعه موردی رودخانه قزل‌اوزن)، فضای جغرافیایی، شماره 32، صص 134-117.
قمی اویلی، ف.، صادقیان، م. ص.، جاوید، ا. ح، و میرباقری، س. ا.، 1389. شبیه­سازی پهنه­بندی سیل با استفاده از مدل HEC-RAS، علوم و فنون منابع طبیعی، شماره 1، صص 115-105.
مقصودی، م.، شرفی، س، و مقامی، ی.، 1389. روند تغییرات الگوی مورفولوژیکی رودخانه خرم­آباد با استفاده از RS، GIS و Auto Cad، مدرس علوم انسانی- برنامه ریزی و آمایش فضا، دوره چهاردهم، شماره 3، صص 294-275.
یمانی، م.، تورانی، م، و چزغه، س.، ۱۳۹۱. تعیین پهنه‌های سیل­گیر با استفاده از مدل HEC-RAS (بالادست رودخانه طالقان)، جغرافیا و مخاطرات محیطی، شماره ۱. صص 16-1.
Alcántara, I., & Goudie, A. S. (Eds.)., 2010. Geomorphological hazards and disaster prevention. Cambridge University Press.
Alkema, D., 2004. RS and GIS applications in flood forecasting. Proceedings of the National Workshop on Flood Disaster Management: Space Inputs. India. pp. 57-59.
Brunner, G.W., 2010. HEC-RAS river analysis system hydraulic reference manual, us army corps of engineers, version 4.1.
Cameron, T., & Ackerman, P. E., 2009. HEC-GeoRAS: GIS Tools for the Support of HEC-RAS Using ArcGIS, Version 4.2, CPD83. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center: Davis, California, 246.
Ezzine, A., Saidi, S., Hermassi, T., Kammessi, I., Darragi, F., & Rajhi, H., 2020. Flood mapping using hydraulic modeling and Sentinel-1 image: Case study of Medjerda Basin, northern Tunisia. The Egyptian Journal of Remote Sensing and Space Science, Volume 23, Issue 3, Pages 303-310.
Ghosh, S. N., 2014. Flood control and drainage engineering, Fourth edition. CRC Press/Balkema.
HEC (Hydrologic Engineering Center)., 2010. HEC-RAS River Analysis System, Hydraulic Reference Manual. U. S. Army Corps of Engineers.
Hyndman, D., & Hyndman, D., 2009. Natural Hazards and Disasters. Second Edition. Brooks/Cole, Cengage Learning. 555p.
Iosub, M., Minea, I., Hapciuc, O., & Romanescu, G. H., 2015. The use of HEC-RAS modelling in flood risk analysis. Aerul si Apa. Componente ale Mediului, 315.
Khattak, M. S., Anwar, F., Saeed, T. U., Sharif, M., Sheraz, K., & Ahmed, A., 2016. Floodplain mapping using HEC-RAS and ArcGIS: a case study of Kabul River. Arabian Journal for Science and Engineering, 41(4), 1375-1390.
Martin, O., Rugumayo, A., & Ovcharovichova, J., 2012. Application of HEC HMS/RAS and GIS tools in flood modeling: A case study for river Sironko–Uganda. Journal of Engineering, Design and Technology, 1(2), 19-31.
Merwade, V., 2004. Geospatial description of river channels in three dimensions (Doctoral dissertation). Civil, Architectural, and Environmental Engineering, The University of Texas at Austin.
Ogras, S., & Onen, F., 2020. Flood Analysis with HEC-RAS: A Case Study of Tigris River. Advances in Civil Engineering, Volume 2020, pp. 1-13.
Organization of American States (OAS)., 1991. Primer on Natural Hazard Management in Integrated Regional Development Planning. Organization of American States, Washington, D.C. http://www.oas.org/osde/publications/Unit/oea66e/begin.htm.
Rangari, V. A., Umamahesh, N. V., & Bhatt, C. M., 2019. Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839-1851.
Razi, M. A. M., Marimin, N. A., Ahmad, M. A., Adnan, M. S., & Rahmat, S. N., 2018. HEC-RAS Hydraulic Model for Floodplain Area in Sembrong River. International Journal of Integrated Engineering, 10(2).
Schanze, J., Zeman, E. and Marsalek, J., 2004. Flood risk management: hazards, vulnerability and mitigation measures. Springer.
Şen, Z., 2018. Flood modeling, prediction, and mitigation. Springer.
Tate, Eric., 1999. Floodplain Mapping Using HEC-RAS and ArcView GIS. M.S.E thesis. The University of Texas at Austin. 215p.
United States Geological Survey (USGS). (2007). Science Topics. Floods. The United States Geological Survey. Available online: http://www.usgs.gov/ (Last accessed on 25 April 2010).
Wohl, E. E. (Ed.)., 2000. Inland flood hazards: human, riparian, and aquatic communities. Cambridge University Press.