شناسایی نواحی مستعد سیلاب در استان گلستان با استفاده از تصاویر سنتینل و مدلسازی هیدرولیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ژئومورفولوژی، گروه جغرافیا، دانشگاه فردوسی مشهد.

2 استادیار ژئومورفولوژی، گروه جغرافیا، دانشگاه فردوسی مشهد

3 دانشیار ژئومورفولوژی، گروه جغرافیا، دانشگاه فردوسی مشهد.

10.22034/gmpj.2021.311053.1311

چکیده

هدف اصلی پژوهش حاضر بررسی بازه زمانی عقب نشینی آب از پهنه‌های سیلابی مربوط به سیلاب سال 1398 استان گلستان با استفاده از تصاویر سنتینل و همچنین مدلسازی پاسخ مناطق مستعد به سیلاب به تغییرات دبی رودخانه در بخشی از گرگانرود با استفاده از مدل هیدرولیکی HEC-RAS می‌باشد. با استفاده از تصاویر Sentinel-1 در بازه‌های قبل، حین و بعد از سیلاب، تغییر جریانات سطحی و روند آب گرفتگی بررسی شده است. در مرحله بعد به کمک داده‌هایی نظیر ضریب مانینگ و مقادیر دبی پیک سیلاب برای دوره‌های بازگشت‌ 25، 50 و 100 ساله از نرم افزار HEC-RAS استفاده شده است. مقایسه تصاویر سه ماه بعد از وقوع سیلاب با تصاویر یک ماه بعد از وقوع نشان می‌دهد که کانال‌ها و مجاری، مزارع و دشت‌های سیلابی واقع در نواحی مرکزی دشت گرگان بین یک تا سه ماه بعد از اتمام سیل همچنان تحت آب گرفتگی قرار داشتند. نتایج مدل نیز نشان داده است سرعت جریان در دشت‌های سیلابی سمت راست که میزان شیب آن‌ها از دشت‌های سیلابی سمت چپ بیشتر بوده، افزایش داشته است. همچنین در دوره‌های بازگشت 25 و 50 ساله، اگر بستر کانال رودخانه به طور مرتب لایروبی شود و رسوبات تجمعی از کف آن حذف شوند، حجم سیلاب از بستر اصلی رودخانه تجاوز نمی‌کند، و فقط در دوره بازگشت 100 ساله و بالاتر از آن شاهد آب گرفتگی محدوده‌های خارج از بستر رودخانه خواهیم بود. به کارگیری دو تکنیک سنجش از دور و مدلسازی هیدرولیکی می‌تواند در جهت انجام اقدامات بازدارنده و کاهش شدت سیلاب راه گشا باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Flood inundation monitoring using Sentinel SAR data and hydraulic modeling

نویسندگان [English]

  • Akram Namazi Rad 1
  • Neda Mohseni 2
  • Seyed Reza Hosseinzadeh 3
1 Department of Geography, Ferdowsi University of Mashhad
2 Department of Geography, Ferdowsi University of Mashhad
3 Dep. of Geography, Faculty of Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction

A flood occurs when the river flow can no longer be contained within its bed, and over spills its banks. Flooding is a natural and regular reality for many rivers, caused by any pulse of overflowing water that overwhelms a river channel, which supports the most naturally dynamic ecosystems. However, humans often perceive floods negatively due to damage and loss of life. Flooding is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services, and human health. The mitigation of the risks associated with flooding requires a certain management of flood zones, sustained by data and information about the events with the help of flood maps with sufficient temporal and spatial resolution. This paper presents the potential use of the Sentinel-1 images for flood mapping in monitoring the flood that occurred during March 2019 in the Golestan province. More specifically, in this study, we describe accurate and robust processing that allows real-time flood extension maps to be obtained, which is essential for risk mitigation.

The aim of this paper was the detection of area susceptible to flood in the Golestan province using Sentinel-1 SAR images and modeling response of area susceptible to changes of Gorganroud river discharge using the HEC-RAS hydrodynamic model during different return periods. The peak discharge data recorded at Golestan province hydrometer station was employed to predict peak discharge values during different return periods.





Methodology

The Gorgan Plain, northern Iran, is part of the larger Aralo-Caspian depression which experienced strong subsidence during the Middle Pleistocene, resulting in the gentle inclination of the plain to the west (average slope of ~0.6%). In this study, it is been used Sentinel-1 SAR images because of their features, configuration, and the free data set available online from Earth Observation data resources. Sentinel-1 SAR datasets, coming before and after the event, were downloaded via the Copernicus Open Access Hub platform. Also, for the perpose of modeling, the peak discharge data recorded at Golestan province hydrometer station was employed to predict peak discharge values during different return periods.



Results and Discussion

SAR data is preferred for flood mapping and real-time monitoring in all weather conditions. In this study, dual-polarized (VV and VH) Sentinel-1 SAR images coupled with hydrological data (peak discharge data) were used to produce flood inundation maps. Thresholding technique has been applied to determine the flood mapping through Sentinel-1 data. VH and VV polarisation methods have been applied for a comparison of their respective accuracies in delineating surface water. The finding reveals that the most accumulation of flood took place in the channels with a massive semiment accumulation surrounding the agricultural land and residential region. The proposed approach demonstrates that the microwave remote sensing data along with GIS can be used efficiently for flood inundation mapping, monitoring, and analysing its effect on channel morphology. Therefore, the results of this study will help to take the initiative to reduce the flood hazard impact in the doab area and increase the flexibility in the process of flood management.



Conclusion

The present study exhibited area susceptible to flood in the Golestan province using Sentinel-1 SAR images and modeling response of area susceptible to changes of Gorganroud river discharge using the HEC-RAS hydrodynamic model during different return periods. Flood occurs due to rapid population growth, land degradation, and climate change, and causes harmful damages to human beings and properties. This can be minimized by giving attention to flood risk measures. This study was aimed to map flood inundation areas along the Gorganroud River using Sentinel SAR images, GIS, and HEC_RAS. Flood inundation mapping is used to define the zones which are more susceptible to flood along the Gorganroud river. Using the past peak discharge data and the release of floods related to 2019, Golestan, besides topographic data, maps were made to illustrate areas predictable to be covered with the flood for different releases. The flooded areas on Gorganroud have been modeled using peak flows for different reoccurrence eras using the HEC-RAS model, GIS for spatial data handling, and HEC-GeoRAS for interfacing among HEC-RAS and GIS. These critical floods were damaging the areas around the River, which is hazardous to social and economic growth due to loss of lives and destruction of properties. Residential areas and agricultural lands are located along the river banks and are highly susceptible to flooding for all return periods. Generally, this study discovered that flooded areas in the upstream and middle parts of the River are high as related to the downstream parts.

Keywords: Flood management, Environmental planning, HEC-RAS, Sentinel-1.

کلیدواژه‌ها [English]

  • Flood management
  • Environmental Planning
  • HEC-RAS
  • Sentinel-1
  • حجازی، ا.، اندریانی، ص.، الماس پور، ف.، مختاری اصل، ا.، 1394. استفاده از تکنیک‌های تصمیم‌گیری‌ چندمعیاره و ‌سنجش از دور در محیط GIS برای بررسی مناطق حساس به وقوع سیلاب درحوضه لیقوان چای. هیدروژئومورفولوژی، دوره 2، شماره 3، صص 61-80.
  • روستائی، ش.، ایاسه، ف.، و رضائی مقدم، م.ح.، 1399. شبیه سازی شبه دو بعدی جریان سیلاب رودخانه لیقوان با تاکید بر دشت سیلابی با استفاده از تکنیک  MIKE11. پژوهش­های ژئومورفولوژی کمی، دوره 9، شماره 1، صص 28-41.
  • رجبی زاده، ی.، ایوب زاده، س.ع.، و ظهیری، ع.، 1398. بررسی سیل استان گلستان در سال 1397 -1398 و ارائه راه کارهای کنترل و مدیریت آن در آینده. اکوهیدرولوژی، دوره 6، شماره 4، صص 921-942.
  • سلیمانی، ک.، شریفی پور، م.، و عبدلی بوژانی، س.، 1399. الگوریتم آشکارسازی پهنۀ خسارت سیل با استفاده از تصاویر سنتینل 2 (مطالعۀ موردی: سیلاب فروردین 1398 استان گلستان)، اکوهیدرولوژی، دوره 7، شماره 2، صص 303-312.
  • شفیعی مطلق، خ.، و عبادتی، ن.، 1399. پهنه‌بندی سیلاب و شبیه‌سازی رفتار هیدرولیک رودخانه با استفاده از نرم‌افزار HEC-RAS  (مطالعۀ موردی‌: رودخانۀ مارون - جنوب غرب ایران)، اکوهیدرولوژی، دوره 7، شماره 2، صص 397-409.
  • طهماسبی، ق.، عزیزی، ک.، و فرجی، م.، 1396. مهمترین عوامل موثر بر وقوع سیل در شهر ایلام، کنفرانس سالانه پژوهش­های معماری، شهرسازی و مدیریت شهری، دانشگاه سیستان و بلوچستان.
  • گنجی، ک.، قره­چلو، س.، و احمدی، ا.، 1398. پهنه­بندی سیلاب رودخانه گرگانرود بر اساس حریم کمی و کیفی با استفاده از HEC-RAS و  GIS. دومین همایش ملی مدیریت منابع طبیعی (آب، سیل و محیط زیست).
  • فتحعلی زاده، ب.، عابدینی، م.، و رجبی، م.، 1399. بررسی علل وقوع سیلاب و مخاطرات آن در حوضه آبریز زنوزچای با استفاده از مدل هیدرولوژیکی HEC-HMS و منطق فازی. پژوهش­های ژئومورفولوژی کمی، دوره 9، شماره 1، صص 134-155.
  • مصری علمداری، پ.، 1400. تحلیل مکانی مخاطره سیلاب در حوضه آبریز قلعه چای عجب شیر با استفاده از GIS و مدل  HEC-HMS. پژوهش­های ژئومورفولوژی کمی، دوره 10، شماره 1، صص 93-111.
  • مختاری، د.، رضائی مقدم، م.ح.، و معزز، س.، 1400. تحلیل دینامیکی مخاطره سیلاب در مخروط افکنه‌های فعال با استفاده از مدل هیدرودینامیکی HEC-RAS و تکنیک GIS(مطالعه موردی: مخروط افکنه لیلان، شمال غرب ایران). پژوهش­های ژئومورفولوژی کمی، دوره 9، شماره 4، صص 169-185.
  • Dutta, D., Herath, S. and Musiake, K., 2000. Flood inundation simulation in a river basin using a physically based distributed hydrologic model. Hydrological Processes, 14(3), 497–519.
  • Marchi, L., Cavalli, M., Amponsah, W., Borga, M. and Crema, S., 2016. Upper limits of flash flood stream power in Europe. Geomorphology, 272, 68-77.
  • Agnihotri, A. K., Ohri, A., Gaur, S., Das, N. and Mishra, S., 2019. Flood inundation mapping and monitoring using SAR data and its impact on Ramganga River in Ganga basin. Environmental monitoring and assessment, 191(12), 1-16.
  • Anusha, N. and Bharathi, B., 2020. Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 207-219.
  • Balasch, J. C., Pino, D., Ruiz-Bellet, J. L., Tuset, J., Barriendos, M., Castelltort, X. and Peña, J. C., 2019. The extreme floods in the Ebro River basin since 1600 CE. Science of the total environment, 646, 645-660.
  • Guan, M. and Liang, Q., 2017. A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation. Environmental Modelling & Software, 88, 10-21.
  • Himayoun, D. and Roshni, T., 2020. Geomorphic changes in the Jhelum river due to an extreme flood event: a case study. Arabian Journal of Geosciences, 13(1), 1-15
  • Hudson, P. F. and Colditz, R. R., 2003. Flood delineation in a large and complex alluvial valley, lower Panuco basin, Mexico. Journal of Hydrology, 280(1-4), 229-245.
  • Marchi, L., Cavalli, M., Amponsah, W., Borga, M. and Crema, S., 2016. Upper limits of flash flood stream power in Europe. Geomorphology, 272, 68-77.
  • Sanyal, J. and Lu, X. X., 2004. Application of remote sensing in flood management with special reference to monsoon Asia: a review. Natural Hazards, 33(2), 283-301.