ارزیابی حساسیت خاک به فرسایش خندقی با استفاده از مدل CART و سیستم اطلاعات جغرافیایی(GIS) (منطقه موردمطالعه: حوضه آبخیز خسویه استان فارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی، دانشگاه اصفهان.

2 دانش آموخته کارشناسی ارشد رشته سنجش از دور و GIS ،دانشکده جغرافیا و برنامه ریزی، دانشگاه اصفهان.

3 دانشیار گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی، دانشگاه اصفهان.

10.22034/gmpj.2023.391714.1429

چکیده

از میان انواع فرسایش آبی، فرسایش خندقی را می توان مخرب ترین نوع آن قلمداد کرد که سالانه موجب ایجاد حجم عظیمی از رسوبات می شود. هدف این پژوهش شناسایی عوامل مؤثر بر وقوع فرسایش خندقی،پیش‌بینی و پهنه‌بندی احتمال وقوع خطر فرسایش خندقی در حوضه آبخیز خسویه در استان فارس با استفاده از مدل CART است. موقعیت خندق‌های شکل‌گرفته با استفاده از نرم‌افزار گوگل ارث و سیستم تعیین موقعیت جهانی (GPS) ثبت‌شده‌اند. در این پژوهش از 16 متغیر تأثیرگذار در فرسایش خندقی شامل شاخص‌های مربوط به توپوگرافی (ارتفاع، شیب، جهت شیب، طول شیب، قدرت جریان، عمق آبراهه، رطوبت توپوگرافی و انحنای طولی)، شاخص نرمال شده پوشش گیاهی (NDVI)، کاربری اراضی، فاصله از راه‌ها، فاصله از آبراهه، نقشه زمین‌شناسی، میزان بارش (برای دوره زمانی سی‌ساله 1351 الی 1381)، نوع خاک و فرسایش‌پذیری خاک استفاده‌شده است. پس از تخصیص مقادیر مربوط به شاخص‌های مستقل به نقاط برداشت‌شده از خندق‌ها مدل‌سازی جهت پهنه‌بندی یا پیش‌بینی مناطق مستعد فرسایش خندقی در منطقه موردمطالعه، در محیط نرم‌افزار SPM با استفاده از مدل CART انجام شد. مدل مذکور در فرایند مدل‌سازی از 70درصد داده‌ها به‌عنوان داده‌های آموزش و 30درصد داده‌ها به‌عنوان داده‌های آزمون استفاده کرده است. دقت مدل اجراشده بر اساس شاخص‌R2 (ضریب همبستگی) برابر 907/0 بوده است. درنهایت نقشه پهنه‌بندی خطر فرسایش خندقی در 5 کلاس؛ خطر خیلی زیاد، خطر زیاد، خطر متوسط، کم خطر و خیلی کم خطر، در محیط نرم‌افزار ArcGIS تهیه گردید، بر اساس این نقشه 10 درصد از مساحت منطقه موردمطالعه در کلاس خطر خیلی زیاد واقع‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of gully erosion susceptibility with using CART model and GIS (Case study: Khasyeh watershed)

نویسندگان [English]

  • reza zakeri nejad 1
  • Abbas Kahrani 2
  • Mojgan Entrzari 3
1 Isfahan
2 Former M.Sc. student of GIS and RS, Faculty of Geographical and Planning, University of Isfahan
3 UI
چکیده [English]

Extended Abstract



Introduction

Soil erosion in any place is affected by various factors, including natural features and human activities. Mediterranean rainfall system and high water erosion, large extent of soils and formations sensitive to erosion, poor natural vegetation in many regions of the country and uneven conditions are some of the important natural factors affecting soil erosion in Iran (Arab Khodri, 2014). So that about 125 million hectares out of 165 million hectares of the country's lands are exposed to water erosiondramatically. Therefore, the incoming blown sand is dropped close to the brink line. Gully erosion as one of type of water erosion is very severe in many areas specially in arid and semi-aird areas. Because in areas with low vegetation cover are mpre prone to the drops of rainfall with high intensity. There are many researches regarding this type of water loss that some of these researches focus on modelling and predicted the prone areas with stochastic model. Rangzen et al. (1401) in their research studied the prone areas to gully erosion using fuzzy membership function in the watershed of Mehr city, in the south of Fars province, they have determined prone areas to gully erosion using fuzzy membership function and hierarchical analysis model (AHP) in Mehr city, in the south of Fars province. The results of their investigation showed that the areas located in the center of the studied area (about 18%) are more sensitive to gullies erosion. They have used the ROC curve to validate the model, the AUC values near 85 indicate the high accuracy of the model for predicting areas prone to gully erosion in the watershed of Mehr city. In this study we have applied the CART model to predict the prone areas in Ljasouh watershed in South of Fasr province in Iran.







Methodology

The study area isKhasuye watershed, with an area of 136,622 hectares, is located 337 km from Shiraz city in Fars province, Zarindasht city. In terms of the geographical location of this watershed between the longitudes of 54 degrees and 9 minutes to 54 degrees and 42 minutes east and the latitudes of 28 degrees and 18 minutes to 28 degrees and 39 minutes north, it occupies the northern strip of Zarindasht city.

The average annual and monthly temperatures of this basin are 21.91 and 19.09 degrees Celsius, respectively. Also, the maximum and minimum average temperature of the basin is 33.09 and 9.78 degrees Celsius, respectively, corresponding to the months of July, the average annual rainfall of Khasouye station is 221.54 mm and its average height above sea level is about 1150 meters.

For the applying the CART model by using the SPM (Salford Peredectie Modeler) software in research, in first step, the locations of the gullies were recorded using the Google Earth software and Global Positioning System (GPS) in the whole study area. The second step, out of 16 influencing variables in gully erosion, including topography-related indicators (height, slope, slope direction, slope length, flow strength, stream depth, topographic wetness and longitudinal curvature), normalized vegetation cover index (NDVI), land use, distance from roads, distance from rivers, geological map, rainfall, soil type and soil erodibility have been used. After assigning the values related to independent indicators to each of gullies area, modeling has been run to predict the prone gullies areas in the study area, in the SPM software environment using the CART model. The applied model has used 70% of the data as training data and 30% of the data as test data in the modeling process.



Results and Discussion



One of the main factors in modeling is checking the accuracy of model results, therefore we have used different stastical index to evaulte the accuracy of our result for each traing and testing data. Table No. 1 shows the CART model accuracy evaluation indices. According to this table, the correlation coefficient or R2 for training data is equal to 0.904 and for test data is equal to 0.845. Considering that (Chain et al., 1998) have defined three values of 0.19, 0.33 and 0.67, respectively, as the criterion value for weak, medium and strong values of the evaluation of the structural parts of the model by means of the R2 index (correlation coefficient). Therfore we can conclude that the model it has high accuracy in predicting the points prone to gully areas height parameter with R square of 0.915 and Std error of estimate of 0.133.



In terms of the relative importance of each of the independent variables participating in the CART modeling process, respectively, the variables of height, amount of precipitation, distance from streams and land use have the highest value with values above 50%, and the variables of slope direction, Longitudinal curvature, topographic wettness have the lowest values.



Conclusion

As we have seen in the predicted map of gully erosion the most of these features occur in the flat area with low slope in the Khasouye basin. Due to rainfall or irregular irrigation of the adjacent lands, the water flows on the surface and finally reaches these flat areas. Usually, the amount of precipitation in high areas is higher than in flat and low-altitude areas, but all the precipitation that occurs in high areas is due to other factors such as topography, slope and the direction of the slope of the area, especially in the Khasouye watershed, where the high areas lack suitable vegetation. By applying the results obtained from the implemented statistical model and the geological maps of the Khosouye watershed, it was determined that the most gullies occurred in the places consisting of the Quaternary formation. Quaternary formation includes alluvial and sedimentary deposits and loess. Due to the high solubility of this type of formation, its sensitivity to water erosion and especially to ditch erosion is very high.



Keywords: Gully erosion, CART model, GIS, Khasouhe watershed.

کلیدواژه‌ها [English]

  • Gully erosion
  • CART model
  • SPM software
انتظاری، م.، ملکی، ا.، مرادی، خ.، الفتی، س.، ۱۳۹۲، پهنه بندی فرسایش خندقی در حوضه آبریز دیره با استفاده از روش تحلیل سلسله مراتبیAHP، برنامه ریزی و آمایش فضا، انتشارات دانشگاه تربیت مدرس،دوره ۱۷، شماره۴، صص ۸۶-۶۳.
رفاهی، ح. ق.، 1388 ،فرسایش آبی وکنترل آن، انتشارات دانشگاه تهران، تهران،صص۶۷۲-۱.
رنگزن، ک.، مکرم، م.، ۱۴۰۱، تعیین مناطق مستعد فرسایش خندقی با استفاده از تابع عضویت فازی در حوضه آبخیز شهر مهر، در جنوب استان فارس، مجله پژوهش های ژئومورفولوژی کمی،دوره ۱۰،شماره ۴،صص 74-56.
شادفر، ص.،۱۳۹۳، کاربرد منطق فازی در بررسی فرسایش خندقی با استفاده از سیستم اطلاعات جغرافیایی (GIS )در حوضه طرود، مجله اطلاعات جغرافیایی،دوره ۲۳، شماره 92،صص 42-35.
عرب خدری، م.، ۱۳۹۳، مروری بر عوامل مؤثر بر فرسایش آبی خاک در ایران، نشریه مدیریت اراضی، دوره ۲، شماره ۱،صص۲۶-۱۷.
عمادالدین، س.، امیدی، م.،آرخی، ص.،کرم، ام.،۱۴۰۰، ارزیابی فرسایش خندقی در حوضه آبخیز قویجق در استان گلستان، مجله مخاطرات طبیعی، دوره ۱۰،شماره ۳۰،صص 33-17.
محمد ابراهیمی، م.،۱۳۹۴، شناسایی علل وقوع فرسایش خندقی با تاکید بر خصوصیات خاک در حوضه آبخیز آق امام، نشریه حفاظت منابع آب و خاک،دوره ۷، شماره ۲، صص13-1.
ذاکری نژاد، ر.، 1399، ارزیابی مدلهای رقومی ارتفاع جهت تهیه نقشه پتانسیل فرسایش خندقی با استفاده از مدل مکسنت و سامانه اطالعات جغرافیایی در حوضه آبخیز سمیرم، جنوب استان اصفهان؛ نشریه سنجش از دور سامانه اطالعات جغرافیایی در منابع طبیعی؛11،(3)،122-106.
ذاکری نژاد، ر.، الوندی، پ.، 1402. پیشبینی فرسایش خندقی با استفاده از دادههای X-TanDEM و مدل حداکثرآنتروپی )مطالعه موردی: حوضه آبخیز خسویه(. پژوهش های فرسایش محیطی، 49 (1): 13.
Arabameri, A., Pradhan, B., & Rezaei, K. (2019). Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Journal of environmental management, 232, 928-942.‏
Asadi Nalivan, O., Rabet, A., Vakili Tajareh, F., Ramezani, M., Momeni, M., & Heydari, K. (2022). Zoning Gully Erosion Susceptibility Using CART, ANN and RF Models. Watershed Engineering and Management.‏
Bouramtane, T., Hilal, H., Rezende-Filho, A. T., Bouramtane, K., Barbiero, L., Abraham, S., ... & Morarech, M. (2022). Mapping gully erosion variability and susceptibility using remote sensing, multivariate statistical analysis, and machine learning in South Mato Grosso, Brazil. Geosciences, 12(6), 235.‏
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1985). 0. L. DAVIES & PL GOLDSMITH, 1984 pp. 478 The appearance of the fourth edition of this book in paperback format will be welcomed by teachers and practising statisticians alike. Prepared by from ICI, the book first appeared in 1947 and quickly established itself as.‏
Chaplot, V. (2013). Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology, 186, 1-11.‏
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.‏
El Maaoui, M. A., Felfoul, M. S., Boussema, M. R., & Snane, M. H. (2012). Sediment yield from irregularly shaped gullies located on the Fortuna lithologic formation in semi-arid area of Tunisia. Catena, 93, 97-104.‏
Gayen, A., Haque, S. M., & Saha, S. (2020). Modeling of gully erosion based on random forest using GIS and R. Gully Erosion Studies from India and Surrounding Regions, 35-44.‏
Nhu, V. H., Janizadeh, S., Avand, M., Chen, W., Farzin, M., Omidvar, E., ... & Lee, S. (2020). GIS-based gully erosion susceptibility mapping: a comparison of computational ensemble data `mining models. Applied Sciences, 10(6), 2039.‏
Sirjani, E., Sameni, A., Moosavi, A. A., Mahmoodabadi, M., & Laurent, B. (2019). Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province, Iran. Geoderma, 333, 69-80.‏
Torri, D., Poesen, J., Borselli, L., Bryan, R., & Rossi, M. (2012). Spatial variation of bed roughness in eroding rills and gullies. Catena, 90, 76-86.‏
Zakerinejad, R & Märker, M. (2014) Prediction of Gully Erosion Susceptibilities using detailed Terrain Analysis and Maximum Entropy Modeling: A case study in the Mazayejan Plain, Southwest Iran, Geografia Fisicae Dinamica Quaternaria, 37(1): 67-76
Zakerinejad, R., & Maerker, M. (2015). An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards, 79: 25-50. ‏
Zakerinejad, R., Christian, S., Volker, H., Michael, M. (2021). Spatial Disterbution of Water Erosion Using Stochastic Modeling in The Southern Isfahan Province, Iran, Geogr FIS DIN QUAT 44 (2): 203–216.