بررسی ارتباط فرونشست زمین و تغییرات تراز آب زیرزمینی با استفاده از تداخل سنجی راداری(مطالعه موردی: شهر مشهد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری ژئومورفولوژی، دانشگاه خوارزمی. مدرس دانشگاه فرهنگیان.

2 دانشجوی دکتری ژئومورفولوژی، دانشکده جغرافیای دانشگاه تهران

10.22034/gmpj.2023.398959.1437

چکیده

فرونشست زمین پدیده‌‌ای ژئومورفیک است که تحت‌تأثیر عوامل طبیعی و انسانی رخ می‌دهد و صدمات ناشی از آن می‌تواند در بسیاری از موارد فاجعه‌بار باشد. بهره‌برداری از منابع آب زیرزمینی پدیده فرونشست زمین را به شدت در این مناطق افزایش داده است. دشت مشهد از جمله مناطق با نرخ فرونشست بسیار بالا است که ضرورت دارد مورد توجه بیشتری قرار گیرد. در پژوهش حاضر با استفاده از تداخل سنجی راداری و روش سری زمانی‌ SBAS در بازه زمانی 2014 تا 2021 در محدودۀ شهر مشهد با انتخاب 38 تصویر Sentinel-1 با فاصله زمانی مناسب، متوسط سرعت فرونشست و برخاستگی زمین در محدودۀ مورد مطالعه برآورد شد. نتایج آنالیز سری زمانی تصاویر نشان داد در شهر مشهد بیشترین میزان جابجایی زمین بین 77- میلی‌متر تا 8+ میلی‌متر بوده است و مناطق دارای فرونشست در بخشهای شمال شهر مشهد قرار گرفته‌اند که بین 30 تا 77 میلی‌متر فرونشست در سال را ثبت کرده‌اند. برای تعیین علت این رخداد، به ارزیابی وضعیت بهره‌برداری از آب‌های زیرزمینی در این بازه زمانی و ارتباط آن با فرونشست زمین پرداخته شد که نتایج نشان داد تراز ایستابی آب زیرزمینی منطقه به طور مداوم در حال کاهش است. همچنین جهت بررسی فعالیت تکتونیکی در رخداد فرونشست، تاریخچه زلزله‌ها و شبکۀ گسلی منطقه مورد ارزیابی قرار گرفت که بررسی‌ها دلالت بر عدم رخداد زمین‌لرزهای مؤثر در منطقه و حوالی آن داشت. بنابراین می‌توان علت اصلی رخداد فرونشست در شهر مشهد را کاهش تراز آب زیرزمین ناشی از بهره‌برداری غیراصولی از این منابع دانست.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the relationship between land subsidence and underground water level changes using radar interferometry (case study: Mashhad city)

نویسندگان [English]

  • Zahra Ranjbar Barough 1
  • mohamad fathallahzadeh 2
1 University of Kharazmi
2 Faculty of Geography, University of Tehran
چکیده [English]

Extended Abstract

Introduction

The phenomenon of land subsidence can cause irreparable financial and human losses and damage many surface and subsurface structures in urban areas and their suburbs. According to the definition of the Geological Institute of the United States of America, the phenomenon of land subsidence includes the collapse or downward settlement of the earth's surface, which can have a small displacement vector, it is said to occur gradually and instantaneously on a large scale. The most important cause of the regional subsidence of the earth's surface in the sedimentary basins of arid and semi-arid regions is the condensation and compaction of sediments due to excessive extraction of groundwater sources. If watery clay layers are placed between sand layers, this phenomenon will be observed more widely and more acutely. Land subsidence usually occurs with a time delay after the long-term extraction of underground water resources. The amount of subsidence depends on the thickness and compressibility of layers, length of loading time, degree, and type of applied stress. With the decrease of the underground water level, the increase of the effective stress caused by the decrease of the pore water pressure causes subsidence. Usually, it takes time to reduce the water pressure and increase the effective tension; Therefore, following the reduction of the piezometric level, subsidence will occur with a time delay. Subsidence caused by the drop in fluid level mainly takes place in unconsolidated or semi-consolidated sediments that are located in the vicinity of sand layers. In such conditions, inelastic compaction occurs due to the increase of effective stress in the soil, the arrangement of the soil grains is disturbed and the thickness of the vertical layer decreases. In the areas where the sediments are not very thick and the underground water extraction continues indiscriminately, lines and cracks are observed on the surface of the land, especially agricultural land, and it is known as the Shaq phenomenon. The phenomenon of subsidence due to the withdrawal of underground water can have different intensities and destructive effects according to the geological situation and geotechnical characteristics of the region. In the sedimentary basins of arid and semi-arid regions, including the Mashhad Plain, the most important cause of ground subsidence is the density of underground water tables due to excessive water extraction. This situation is especially critical in the area where excessive pumping of aquifers containing sand layers is located between impermeable clay layers and causes subsidence. This phenomenon is also happening in Iran, and it is visible, especially in the eastern and central regions of the country, which suffer from drought and the water supply through underground water extraction has greatly increased. Mashhad Plain is one of the areas with a very high subsidence rate, which needs to be given more attention. Land subsidence is a dangerous global problem, and geometric methods are not suitable for extensive and serious monitoring of land deformation.



Methodology

Radar interferometry with artificial valve is a remote sensing technique. In which two or more radar images are used to produce digital elevation models or to map the displacement of the earth's surface. In the above article, using radar data and using radar interferometry technique and small baseline time series analysis, the time series of land subsidence phenomenon in Mashhad is monitored and measured.

In the present study, using radar interferometry and SBAS time series method, in the period from 2014 to 2021 in Mashhad city, by selecting 38 Sentinel-1 images with a suitable time interval, the average speed of land subsidence and uplift in the studied area was estimated.Then, to determine the main factors of this event, the studied area was investigated in terms of changes in the underground water level and tectonics.



Results and Discussion

The results of the analysis of the time series of the images showed that in Mashhad, the maximum ground displacement is between -77 and +8 mm, and the areas with subsidence are located in the northern parts of Mashhad, which is recorded between 30 and 30 mm. 77 mm subsidence per year. To determine the cause of this event, tectonic assessment and the status of underground water exploitation in this period and its relationship with land subsidence and earthquake data in the area were investigated.



Conclusion

The results of the research showed that the maximum subsidence rate is 77 mm in the area of Mashhad in the period of 7 years from 2014 to 2021 and is related to the north of Mashhad. It should be noted that while advancing towards the city center from the north, you should look for irreparable damage shortly. To check the accuracy of interferometry and interpret the results and investigate the possible cause of the subsidence of Mashhad city, the trend of changes in the water level in piezometric wells, this factor in the occurrence of subsidence in the region was investigated. The information on piezometric wells was obtained in the city of Mashhad, the results of which strongly showed the water level in the past years, which is based on the cause of subsidence in this area. Only in the center is the temporary rise of the underground water level due to the feeding of the urban Mashhad aquifer.

Then, to investigate the tectonic participation in the subsidence event, the history of earthquakes and the fault network of the region were evaluated, which confirmed the absence of the investigated earthquakes (maximum 3.8 on the Richter scale) in the region and its surroundings, and there is no fault network within the area of the subsidence assets. did not have. There is no activity. The probability of supposition and the possibility of technology playing a role in the subsidence event is insignificant. Small cracks are mainly created near mental wells or agricultural water exploitation wells and are scattered much more.

کلیدواژه‌ها [English]

  • Interference
  • groundwater level
  • time series
  • subsidence
  • Mashhad
افضلی، ع.، شریفی کیا، م. و شایان، س.، 1392 ، ارزیابی آسیب پذیری زیرساخت ها و سکونت‌ها از پدیده فرونشست زمین در دشت دامغان ، فصلنامه ژئومورفولوژی کاربردی ایران، سال اول شماره اول،صص73-61.
پیری، ح.، رحمانی، الف.، 1395، بررسی میزان فرونشست شمال دریاچه ارومیه با استفاده از روش تداخل‌سنجی راداری اینترفرومتری InSAR، (مطالعه موردی: دشت تسوج)، کنفرانس بین‌المللی پیامدهای جغرافیایی و اثرات زیست محیطی شرایط دریاچه ارومیه.
تورانی، م.، آق‌آتابای،‌ م.، روستایی،‌ م.، ۱۳۹۷، مطالعه فرونشست در شهر گرگان با استفاده از روش تداخل‌سنجی راداری، مجلۀ آمایش جغرافیایی فضا، دوره ۸،‌ شماره ۲۷، صص ۱۲۸-۱۱۷.
خرمی، م.، 1396، تخمین فرونشست مشهد با استفاده از تکنیک تداخل سنجی راداری و ارزیابی آن با توجه به مشخصات ژئوتکنیکی، پایان ناممه کارشناسی ارشد، گروه مهندسی عمران گرایش ژئوتکنیک دانشگاه فردوسی مشهد.
رنجبر‌باروق، ز. فتح‌اله‌زاده، م.،‌ 1401‌، بررسی فرونشست زمین با استفاده از سری زمانی تصاویر راداری و ارتباط آن با تغییرات تراز آبهای زیرزمینی (مطالعه موردی: کالن شهر کرج)، پژوهشهای ژئومورفولوژی کمّی، سال دهم، شماره 4، صص155-138.
روزبان، ع.، 1395، بررسی فرونشست زمین با استفاده از روش تداخل سنجی تفاضلی راداری با بکارگیری تصاویر سنجنده جدید Sentinel-1  ، پایان نامه کارشناسی ارشد مهندسی نقشه برداری - گرایش سنجش از دور، دانشکده مهندسی عمران و نقشه برداری گروه مهندسی نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته.
زارع کمالی، م.، الحسینی المدرسی، ع. و نقدی، ک.، ، 1396. مقایسه میزان جابجایی عمودی زمین با استفاده از الگوریتم SBAS در باندهای راداری X و C (مطالعه موردی:اراضی تهران)، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، سال هشتم، شماره 3، صص 104-120.
دولتی، ج،. لشکری پور، غ. ر،. حافظی مقدس، ن،. صالحی متعهد، ف،. 1395، بررسی روند توسعه، اثرات و مکانیسم فرونشست زمین در دشت مشهد، همایش تخصصی پدیده فرونشست زمین در ایران، تهران، سازمان زمین شناسی و اکتشافات معدنی کشور.
سازمان زمین‌شناسی و اکتشافات معدنی.1399. بررسی فرونشست زمین در دشت مشهد.
شریفی کیا، م.، 1391 ، تعیین میزان فرونشست زمین به کمک تداخل سنجی راداری در دشت نوق و  بهرمان، آمایش و فضا ، دوره شانزده، شماره 3 ،صص77-56.
صفاری، ا.، جعفری، ف.، توکل، م.، 1395 ، پایش و فرونشست زمین و ارتباط آن با آب زیرزمینی مطالعه موردی دشت شهریار و کرج، پژوهش های ژئومورفولوژی کمی، سال پنجم، شماره 2،صص93-82.
لشکری پور، غ،. غفوری، م،. صالحی، ر،. 1389. فرونشست دشت مهیار جنوبی و تاثیر شکاف های ناشی از آن بر مناطق مسکونی، صنعتی و کشاورزی، پنجمین همایش ملی زمین شناسی و محیط زیست، اسالمشهر، دانشگاه آزاد اسلامشهر.
 موسوی حرمی، ر،. محبوبی، ا،. برنر، ر،. خانه باد، م،. 1381. نقش تکتونیک در رسوبگذاری و مورفولوژی رودخانه کشف رود واقع در شمال شرق ایران، مجله علوم دانشگاه تهران، شماره(1). 68-53.
یمانی، م.، نجفی, ا. و عابدینی، م.، 1388 ، ازتباط فرونشست زمین و افت آب زیرزمینیدشت قره بلاغ فسا، فصلنامه علمی پژوهشی جغرافیا دوره 1 ، صص 27-9.
Afzali A, Sharifi-Kia M, And Shayan S.(2013). Assessment of Infrastructure and Settlement Vulnerability from Land Subsidence in Damghan Plain, Iranian Journal of Applied Geomorphology.; 1(1) .
Alipour, S., Motgah, M., Sharifi, M. A. & Walter, T. R. (2008). InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas,track 414, 1-5.
Akbari, V., Motagh, M., (2012), Improved Ground Subsidence Monitoring Using Small Baseline SAR Interferograms and a Weighted Least Squares Inversion Algorithm, IEEE Geoscience and Remote Sensing, 9(3): 37-441
Bates, R. L., and Jackson, J. A., (1980). “Glossary of Geology.” American.Scott, R.F. (1979). Subsidence-revaluation and prediction of subsidence. Saxema, S.K., Process Conference, ASCE, Gainsville, USA.
Behniafar, .A. Eshraghi .A ,Ghanbarzadeh .H .(2010). Investigation of effective factors in subsidence of Mashhad plain and its geomorphic consequences.
Bhattarai, R., Alifu, H., Maitiniyazi, A. & Kondoh, A. (2017). Detection of land subsidence in Kathmandu valley, Nepal, using DInSAR technique, Land, 6(2), 39-54.
Bokhari, R., & et al. (2023). Land subsidence analysis using synthetic aperture radar data. Heliyon, 9.
Cigna, F., Bateson, L.B., Jordan, C.J., & Dashwood, C. (2014). Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sensing of Environment, 152, 441–466.
Chatterjee R S, Shailaja Thapa K B, Singh G,Varunakumar E, Raju V R (2015) Detecting,mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. Journal of Earth System Science 124(6):1359-1376.
Calo, F., Notti, D., Galve, J.P.,Abdikan, S., Gorum, T., Pepe, A. & Balik, F. (2017). DInSAR based detection of land subsidence and correlation with groundwater depletion in Konya plain, Turkey, Remote sensing, 9(1), 83-98.
Dehghani, M., Valadan Zouj, M. J., Saatchi, S., Biggs, J., Parsons, B., Wright, T., (2009), Radar Interferometry Time Series Analysis of Mashhad Subsidence, Journal of the Indian Society of Remote Sensing, 37(1):147-156. doi:10.1007/s12524-009-0006-x.
Davoodijam, M., Motagh, M., & Momeni, M. (2015). Land subsidence in Mahyar Plain, Central Iran, investigated using Envisat SAR Data. Proceedings the 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS'11). Springer.
Dong, J., Zhang, L., Tang, M., Liao, M., Xu, Q., Gong, J., & Ao, M. (2018). Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sensing of Environment, 205,180–198.
Goorabi, A., Karimi, M.,Yamani, M., Perissin, D. (2020). Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by Sentinel-1A InSAR observations, Journal of Arid Environments,Vol: 181, pp:104-238.
Guoqing Y, Jingqin M (2008) D-InSAR technique for land subsidence monitoring. Earth Science Frontiers 15(4):239-243.
Hooper A J (2007) Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. Journal of Geophysical Research 112:1-21
Haghshenas Haghighi, M., Motagh, M., (2021) Land Subsidence Hazard In IRAN Revealed By Country-Scale Analysis Of Sentinel-1 INSAR.
Liu, C.W., Lin, W.S., & Cheng, L.H. (2006). Estimation of land subsidence caused by loss of smectiteinterlayer water in shallow aquifer systems. Hydrogeology, 14(4), 508-525.
Liu, Z., & et al. (2023) Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data. International Journal of Applied Earth Observations and Geoinformation, 18.
Liora Furst.S.,Doucet,S., Vernant,P., Champollion,C., and Carme,J.,(2021), Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion, Solid Earth, 12, 15–34.
Motagh .M, Arabi .S ,Zschau .J levelling.(2007). , Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, leaving and GPS, Geophysical Journal International, 168(2).518-526.
Moatag M, Davoodi J, Momeni M. Hashemi M.(2012) Discovery and representation of subsidence of Mahyar plain of Isfahan by interferometry, Extended Scientific-Engineering Survey and Spatial Information. 3(2).
Mousavi, S.M., Shamsai, A., Naggar, M.H.Z., Khamehchian, M., (2010), A GPS-based monitoring program of land subsidence due to groundwater withdrawal in Iran, Canadian Journal of Civil Engineering, 28(3): 452-464.
Pacheco, J., J. Arzate, E., Rojas, M., Arroyo, V.,& Yutsis G. Ochoa. 2006. Delimitation of ground failure zones due to land subsidence using gravity data. Engineering Geology, 84(40636): 143-160.
Pacheco, J., Arzate, J., Rojas, E., Arroyo, M., Yutsis, V., Ochoa, G.(2015). Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley, México. 84(3): 143-160
Peter, H., Jaggi, A., Fernandez, J., Escobar, D., Ayuga, F., Arnold, D., Wermuth, M., Hackel, S.,Otten, M., Simons, W., Visser, P., Hugentobler, U., & Femenias, P. (2017). Sentinel-1A – First precise orbit determination results. Advances in Space Research, 60(5), 879–892.
Prati, C., Ferretti, A., & Perissin, D. (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. Geodynamics, 49 (3–4), 161-170.
Rateb, A., Abotalib, Z., (2020) Inferencing the land subsidence in the Nile Delta using Sentinel1 satellites and GPS between 2015 and 2019, Science of the Total Environment 729:1-10.
Salehi, R., Ghafoori, M., Lashkaripour, G.R., & Dehghani, M. (2013). Evaluation of land Subsidence in Southern Mahyar Plain Using Radar Interferometry. Irrigation and Water Engineering, 3(11), 47-57 (In Farsi).
Scott, R.F. (1979). “Subsidence-a review in evaluation and prediction of subsidence.” S.K. Saxema, ed., Proc., Conf. ASCE, Gainsville, 1-25
Torabi-Hikmabad.(2014). Evaluation of rising water level and its problems in the center of Mashhad, Ferdowsi university of mashhad.
USGS (United States Geological Survey), Research and Review Information Located, Assess on September 2011:http://water.usgs.gov/ogw/pubs/fs00165.
Zhu, L., Gong, H., LI,X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193,243–255.
Zhang, Y., Wang, Z., Xue, Y., Wu, J., & Yu, J. (2018). Mechanisms for earth fissure formation due to groundwater extraction in the Su-Xi-Chang area, China. Bulletin of Engineering Geology and the Environment, 75(2), 745-760.