ارائه مدل ترکیبی نوین به‌منظور افزایش دقت تهیه نقشه‌های حساسیت زمین‌لغزش با تأکید بر مدل رگرسیون وزنی جغرافیایی (GWR) (مطالعه موردی: حوضه دزعلیا، استان اصفهان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشگاه دامغان

3 دانشگاه تربیت مدرس

4 تحقیقات کشاورزی اصفهان

چکیده

در این پژوهش یک مدل ترکیبی نوین به‌منظور افزایش دقت تهیه نقشه حساسیت زمین‌لغزش در حوضه دزعلیا، استان اصفهان که یک منطقه حساس نسبت به زمین‌لغزش می‌باشد ارائه‌شده است. بدین منظور در ابتدا با استفاده از مطالعه ادبیات تحقیق، تفسیر عکس‌های هوایی و خصوصیات منطقه مطالعاتی ۲۳ فاکتور مؤثر در زمین‌لغزش شامل فاکتورهای ژئومورفولوژیکی، زمین‌شناختی، هیدرولوژیکی و محیطی انتخاب گردید، سپس با استفاده از مدل AHP < /span> به غربالگری پارامترها پرداخته شد و تعداد ۱۲ پارامتر به‌منظور اجرای مدل انتخاب گردید. با توجه به این‌که میزان تأثیر پارامترها در زمین‌لغزش در بخش‌های مختلف یک حوضه یکسان نمی‌باشد به‌منظور رفع این مشکل از مدل رگرسیون وزنی جغرافیایی به‌منظور قطعه‌بندی حوضه موردمطالعه استفاده گردید و حوضه با استفاده از ۳ پارامتر لیتولوژی، TPI و انحنای سطح به ۲۵ قطعه تقسیم گردید و سپس مدل SVM-FR برای هر یک از قطعه‌ها اجرا گردید و درنهایت از تلفیق قطعه‌ها، نقشه نهایی پهنه‌بندی حساسیت زمین‌لغزش حاصل گردید. از ۸۴ زمین‌لغزش موجود در منطقه ۷۰ درصد (۵۹ زمین‌لغزش) به‌منظور اجرای مدل و ۳۰ درصد (۲۵ زمین‌لغزش) به‌منظور صحت سنجی مورداستفاده قرار گرفت. به‌منظور بررسی دقت و صحت مدل، به مقایسه مدل با مدل‌های SVM-FR و FR با استفاده از منحنی ROC پرداخته شد و نتایج نشان داد مدل ترکیبی دارای دقت پیش‌بینی بالاتری (۸۵۱/۰) نسبت به مدل SVM-FR (۷۴۲/۰) و مدل FR (۷۱۴/۰) می‌باشد. بر اساس نتایج حاصل از مدل ترکیبی ۵۱/۳۴۵۰ هکتار (۷۴/۲۰ درصد) از منطقه مطالعاتی در رده خطر زیاد و ۹۴/۴۴۱ هکتار (۶۶/۲ درصد) در رده خطر خیلی زیاد قرار دارد. با توجه به تأثیر شگرف مدل GWR در بالا بردن دقت نقشه‌های حساسیت زمین‌لغزش، استفاده از آن در پژوهش‌های مربوط به زمین‌لغزش توصیه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting the modern hybrid model for Increased accuracy of Landslide susceptibility mapping with emphasis on geographical weight regression model (GWR) (case study: Dezolya basin , Isfahan province)

نویسندگان [English]

  • mojtaba yamani 1
  • gholamreza maghami moghim 2
  • alireza arab ameri 3
  • kourosh shirani 4
1 university of tehran
2 damghan university
3 tarbiyat modares university
4 isfahan agriculture
چکیده [English]

Introduction :
The landsides are one of the most common catastrophic natural dangers that occur in many regions of world and cause to hundreds milliard dollar economic loss and hundreds thousand mortality and injuries yearly. During recent years, many governments and research institutions have invested in assessing the landslide risks for preparing the maps that indicate the landslides spatial distribution (Gusset et al 1999). Regardless the obtained progresses for identifying, measuring, forecast and warn systems of landslide, but yet the losses result from landslide are increasingly in the worldwide (Schuster 1996). The harmful losses of landside is relatively very high in Iran and have been caused to very much mortality. For example, In Spring of 1377, the Abikar village in the Bazoft region of chaharmahal bakhtiyari buried under high volume of soil and stone and all of its habitants died (Ali mohammadi and colleagous 1388). In this research, a modern hybrid approach of GWR-SVM-FR have been used. It’s worthy to note that different degrees of parameters effect maybe occur in studied region so that with local changing in one basin, the effect of one parameter will change (Emer, Düzgün 2010). For removing this problem in this research, the geographical weight regression model have been used for preparing landslide sensitive map that is an innovation and evolution for preparing the landslide sensitive maps.
 
Methodiligy:
The used data in this research for extracting the environmental parameters including: geology map in 1:100000 scale, topography map in 1:50000 scale, aerial images with high quality in 1:40000 scale, satellite images ETM+ , ASTER data with 30m accuracy, precipitation data of climatology station in a 30 years period. Many researchers have confirmed the correlation between various environmental factors with landslide event (liu et al 2004). According to these researches and studied region specifications 23 environmental factor selected for predicting the landslide sensitive regions including geomorphological, geological, hydrological and environmental factors. In the next step, for screening the parameters, the AHP method have used (figure 15). 12 parameters, among 23 parameters selected for executing the model .In the next stage, the studied region divided to 25 divisions by using GWR method and the numbers of each 12-fold parameters in each division determined by using SVM method. The FR method used for determining the sub-criterion weight too. In the last step, after executing the SVM-FR model for each division, the maps merged altogether and the final map of landslide sensitive zoning obtained..
 
Results and discussion
The results of criterion ranking in 25-fold regions with SVM model indicated that in the most regions, the lithology, TPI and surface curvature parameters have had too effect in landslide occurring that conform with research results (Ahmad Abadi and Rahmati 1394, Regmi, Jaafari et al 2014). The results of assessing the landslides sensitive according to frequency ratio model indicated that the effect amount of every class of effective factors in landslide have been specified according to accumulation of occurred landslide in that class (table 2). Just as indicated in table 2, the height parameter in 3190-4000 m class with frequency ration of 2/131 have had the grates effect in landslide occurring, and the frequency ratio will decrease with decreasing the height. Pachauri& Pant 1992 suggested that higher heights indicate more sensitive to landslide. and etc. Table 2 indicate the results of relation of other parameters with landslides by using frequency ratio model. After calculating the weight of 12-fold parameters for every 25-fold regions by using back vector machines method and multiply it on the weight of mentioned factors classes by using frequency method, the weight maps added together and the landslide sensitive map obtained for every regions. Finally, the final map of landslide sensitive obtained by integrating the 25-fold regions maps.
 
Conclusion
results indicated that hybrid model GWR-SVM-FR, have the higher accuracy (0/158) relative to SVM FR (0/247) and FR model (0/417). The results of this research conform with sabokbar et al 2016 investigation that believe GWR algorithm is very effective in upgrading the accuracy of landslide sensitivity. According to final results of hybrid method, in the studied region 138/89 hec (%5) locate in very low risk level, 33296/73 hec (%14/26) in low risk, 25894/52 hec (%92/79) in moderate risk, 543/15 hec (2/47 %) in high risk and 144/49 hec (% 2/66) is in very high risk.

کلیدواژه‌ها [English]

  • Landslide
  • geographical weight regression model
  • Validation
  • Dezolya basin
  • Support vector machine model
  • frequency ratio
  • احمدآبادی، علی و مریم رحمتی، ۱۳۹۴، کاربرد شاخص های کمی ژئومورفومتریک در شناسایی پهنه های مستعد زمین لغزش با استفاده از مدل svm (مطالعه موردی: آزاد راه خرم آباد-پل زال)، پژوهش های ژئومورفولوژی کمی، شماره۳، صص ۲۱۳-۱۹۷.
    • Komac, M., 2006, A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia, Geomorphology, No. 74, pp. 17-28.
    • Yu, X., Wang, Y., Niu, R., Hu, Y., 2016, A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China, Int J Environ Res Public Health, No. 13 . doi:  10.3390/ijerph13050487.
  • علی محمدی، صفیه؛ پاشای یاول، عباس؛ شتایی جویباری، شعبان و لطف الله پارسایی، 1388، ارزیابی کارایی مدل های پهنه بندی خطر زمین لغزش در حوزه آبخیز سیدکلاته رامیان، مجله پژوهش های حفاظت آب و خاک، جلد شانزدهم، شماره اول، ص59-78.
  • کرم, عبدالامیر و فرج الله محمودی، 1384، مدل سازی کمی پهنه بندی خطر زمین­لغزش در زاگرس چین خورده( مطالعه موردی: سرخون در استان چهارمحال و بختیاری)، پژوهش­های جغرافیایی، ش 51، ص1-14.
  • ‏کرمی, فریبا؛ بیاتی، مریم و داوود مختاری، 1386، ارزیابی‎ ‎و‎ ‎پهنه بندی‎ ‎خطر‎ ‎حرکات‎ ‎توده ای‎ ‎مواد در‎ ‎حوضه‎ ‎آبریز‎ ‎اوجانچای، مجله‎ ‎جغرافیا و توسعه، ش1، ص 107-124.‏
  • Aleotti, P., Chowdhury, R., 1999, Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ, No. 58, pp. 21–44.
  • Ahmadabadi, A., Rahmati, M., 2015, Application of geomorphometric quantitive parameters in detection of landslide Using SVM model (Case Study: hillway of Khoramabad), Researchers of quantitive geomorphology, No. 3, pp. 197-213.
  • Alimohamadi, S., Pashay yavel, A., Shatayi goybari, S.H., Parsayi, L., 2009, Assessment of Zonation models of landslide hazard in ramian watershed, Researchers of water and soil protection, No. 1, pp. 59-78.
  • Ayalew, L., Yamagishi, H., 2005, The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology, Vol. 65, pp.15–31.
  • Barredo, J.E.I., Benavides, A., Herv, A.S.J., van Westen, C.J., 2000, Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int. J. Appl. Earth Obs. Geoinf, pp. 9–23.
  • Ballabio, C., Sterlacchini, S., 2012, Support vector machines for landslide susceptibility mapping: The Staffora River Basin case study, Italy. Math. Geosci, No,44, pp. 47–70.
  • Bai, S., Lü, G., Wang, J., Zhou, P., Ding, L., 2011, GIS-based rare events logistic regression for ‎landslidesusceptibility mapping of Lianyungang, China. J. Envir nmental Earth Sciences, 62, pp. ‎‎139-149.‎
  • Bonham-Carter, G.F., 1994, Geographic information systems for geoscientists: modeling with GIS. In: Bonham-Carter F (ed) Computer methods in the geosciences, Pergamon, Oxford, pp. 398.
  • Binh Thai, P., Tien Bui, D., Pourghasemi, H., Indra, P., Dholakia, M., 2016, Landslide ‎susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of ‎prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees ‎methods Theoretical and Applied Climatology. DOI 10.1007/s00704-015-1702-9.‎
  • Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O. B., 2012, Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS, Computers and Geosciences. doi:10.1016/j.cageo.2011.10.031.
  • Brunsdon, C., Fotheringham, A.S., Charlton, M.E., 1996, Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal, No. 28, pp. 281–298.
  • Celik, M., Kazar, B.M., Shekhar, S., Boley, D., 2016, Parameter Estimation for the Spatial Autoregression Model: A Rigorous Approach. [(accessed on 23 February 2016)]. Available online: http://www-users.cs.umn.edu/~boley/publications/papers/NASA06.
  • Chalkias, C., Kalogirou, S., Ferentinou, M., 2014, Landslide susceptibility, Peloponnese peninsula in south Greece. J. Maps, No. 10, pp. 211–222. doi: 10.1080/17445647.2014.884022.
  • Chen, W., Chai, H., Sun, X., Wang, Q., Ding, X., Hang, H., 2016, A GIS-based comparative study ‎of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility ‎mapping, Arabian Journal of Geosciences, 9: 204. doi:10.1007/s12517-015-2150-7.‎
  • Chen, W., Pourghasemi, H., Zhao, Z., 2017, A GIS-based comparative study of Dempster- Shafer, ‎logistic regression and artificial neural network models for landslide susceptibility mapping ‎‎,Geocarto International 32, pp. 367-385.‎
  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., Märker, M., 2014, Gully ‎erosion susceptibility assessment by means of GISbased logistic regression: a case of Sicily (Italy). ‎Geomorphology, 204, pp. 399–411.‎
  • Dai, F.C., Lee, C.F., Xu, Z.W., 2001, Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol, No. 40, pp. 381–391.
  • Dai, F.C., Lee, C.F., 2002, Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, No. 42, pp. 213–228. doi: 10.1016/S0169-555X(01)00087-3.
  • Dou, J., Yamagishi, H., Pourghasemi, H., Yunus, A., Song, X., Xu, Y., Zhu, Z., 2015, An integrated ‎artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan ‎Natural Hazards, 78, pp.1749-1776.‎
  • Erener, A., Düzgün, H.S.B., 2010, Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway) Landslides, No. 7, pp. 55–68. doi: 10.1007/s10346-009-0188-x.
  • Erener, A., Düzgün, H.S.B., 2010, Improvement of statistical landslide susceptibility mapping by ‎using spatial and global regression methods in the case of More and Romsdal (Norway) Landslides. ‎‎7, pp. 55–68.‎
  • Ercanoglu, M., Temiz, F. A., 2011,  Application of logistic regression and fuzzy operators to ‎landslide susceptibility assessment in Azdavay (Kastamonu, Turkey), J. Environ. Earth Sci, 64, pp. ‎‎949-964.‎
  • Fotheringham, A., Brunsdon, C., Charlton, M., 2002, Geographically weighted regression the analysis of spatially varying relationships University of Newcastle, England: Wiley.
  • Fotheringham, A.S., Charlton, M., Brunsdon, C., 1996, The geography of parameter space: An investigation of spatial non-stationarity. Int. J. Geogr. Inf. Syst, No.10, pp. 605–627. doi: 10.1080/026937996137909.
  • Fotheringham, A.S., Charlton, M., Brunsdon, C., 1997, Recent Developments in Spatial Analysis. Springer; Berlin, Germany, Measuring spatial variations in relationships with geographically weighted regression, pp. 60–82.
  • Fotheringham, A.S., Charlton, M., Brunsdon, C., 1998, Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan, No. 30, pp. 1905–1927. doi: 10.1068/a301905.
  • Gomez, H., Kavzoglu, T., 2005, Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol, No. 78, pp. 11–27. doi: 10.1016/j.enggeo.2004.10.004.
  • Guzzetti, F., Carrara, A., Cardinalli, M., Reichenbach, P., 1999, Landslide hazard evaluation: a review of current techniques and their application in amulti-case study, central Italy. Geomorphology, No. 31, pp.181–216.
  • Hong, H., Pradhan, B., Xu, C., Tien Bui, D., 2015a, Spatial prediction of landslide hazard at the ‎Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and ‎support vector machines. CATENA, 133, pp.266–281.‎
  • Hong, H., Xu, C., Revhaug, I., Tien Bui, D., 2015b, Spatial prediction of landslide hazard at the ‎Yihuang area (China): a comparative study on the predictive ability of backpropagation multi-layer ‎perceptron neural networks and radial basic function neural networks. In: Robbi Sluter C, ‎Madureira Cruz CB, Leal de Menezes PM (eds) Cartography—maps connecting the world. Lecture ‎notes in geoinformation and cartography. Springer International Publishing, pp. 175-188.‎
  • Ilinca, V., Gheuca, I., 2011, The red lake landslide (Ucigau Mountain, Romania). ‎Carpathian Jour. Earth Environ, No. 23, pp. 263-272.‎
  • Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., Sattarian, A., 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran, Int. J. Environ. Sci. Technol. No. 11, pp. 909–926.
  • Jenks, G.F., 1967, The data model concept in statistical mapping. Int. Yearb. Cartogr, No.7, pp.186–190.
  • Karam A., Mahmodi F., 2005, Quantitive Modeling of landslide hazard zonation in the zagros (Case Study: Sorkhoon), geographical researchers, No.1, pp. 1-14.
  • Karami F., Bayati M., Mokhtari D., 2007, Assessment and Zonation of mass movement hazard of material in ojanchay watershed, geography and development, No.1, pp. 107-124.
  • Lee, S., Pradhan, B., 2007, Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models, Landslides, No. 4, pp. 33–41.
  • Liu, J.G., Mason, P.J., Clerici, N., Chen, S., Davis, A., Miao, F., Deng, H., Liang, L., 2003, Landslide hazard assessment in the three gorges area of the Yangtze River using ASTER imagery: Zigui–Badong, Geomorphology, No. 61, pp. 171–187. doi: 10.1016/j.geomorph.2003.12.004.
  • Li, Y., Chen, G., Tang, C., 2012, Rainfall and earthquake-induced landslide susceptibility ‎assessment using GIS and artificial neural network. Nat Hazards Earth Syst Sci 12, pp. 2719–‎‎2729.‎
  • Lee, S., Ryu, J.H., Min, K., Won, J.S., 2003, Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf. Process, Landforms, No. 28, pp. 1361–1376. doi: 10.1002/esp.593.
  • Miller, H.J., 2004, Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr, No. 94,  pp. 284–289. doi: 10.1111/j.1467-8306.2004.09402005.x.
  • Mohammady, M., Pourghasemi, H.R., Pradhan, B., 2012, Landslide susceptibility mapping at Golestan Province Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of evidence models. J Asian Earth Sci, No. 61, pp. 221–236.
  • Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2006, Artificial neural networks and cluster analysis in landslide susceptibility zonation, Geomorphology,No. 94, pp. 379–400. doi: 10.1016/j.geomorph.2006.10.035.
  • Marjanović, M., Kovačević, M., Bajat, B., Voženílek, V., Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol, No. 123, pp. 225–234. doi: 10.1016/j.enggeo.2011.09.006.
  • Ohlmacher, G.C., Davis, J.C., 2003, Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng. Geol, No. 69, pp. 331–343. doi: 10.1016/S0013-7952(03)00069-3.
  • Oh, H. J., Lee, S., 2010, Cross validation of logistic regression model for landslide susceptibility ‎mapping at Geneoung areas, Korea. J. Disaster Advances, 3, pp. 44–55 .‎
  • Ozdemir, A., Altural, T., 2013, A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci, No. 64, pp.180–197.
  • Pradhan, B., Lee, S., 2010, Landslide susceptibility assessment and factor effect analysis:back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling, Environmental Modelling & Software, No. 25, pp. 747-759.
  • Pradhan, B., 2013, A comparative study on the predictive ability of the decision tree, support ‎vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comput ‎Geosci ,51, pp. 350–365.‎
  • Pachauri, A.K., Pant, M., 1992,  Landslide hazard mapping based on geological attributes. Eng Geol, No. 32, pp. 81–100.
  • Pourghasemi, H.R., Moradi, H.R., Fatemi Aghda, S.M., Gokceoglu, C., Pradhan, B., 2013, GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci. doi:10.1007/s12517-012-0825-x.
  • Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C., Gokceoglu, C., 2013, Landslide ‎susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth ‎Syst Sci 2, pp. 349–369.‎
  • Peng, L., Niu, R., Huang, B.,Wu, X., Zhao, Y., Ye, R., 2014, Landslide susceptibility mapping ‎based on rough set theory and support vector machines: A case of the Three Gorges area, China. ‎Geomorphology, 204, pp. 287–301.‎
  • Pradhan, B., Lee, S., 2009, Landslide risk analysis using artificial neural network model focusing on different training sites. I J Physical Sci, No. 3, pp.1–15.
  • Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T., Akgun, A., 2014, Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya, Arab J Geosci , No.7, pp. 725–742.
  • Regmi, N.R., Giardino, J.R.,‎ Vitek, J.D., 2010,  Modeling susceptibility to landslides using ‎the weight of evidence approach( Case Study: Western Colorado, USA), ‎Geomorphology, No. 115, pp. 172–‎‎187.
  • Regmi, N.R., Giardino, J.R., Vitek, J.D., 2010, Assessing susceptibility to landslides: Using models to understand observed changes in slopes, Geomorphology, No. 122, pp. 25–38. doi: 10.1016/j.geomorph.2010.05.009.
  • San, B.T, 2014, An evaluation of SVM using polygon-based random sampling in landslide ‎susceptibility mapping: The Candir Catchment area (Western Antalya, Turkey), Int. J. Appl. ‎Earth Obs, 26, pp. 399–412. ‎
  • Schuster, R., 1996, Socioeconomic significances of landslides. In: Turner AK, Shuster RL (eds) Landslides Investigation and Mitigation, Transportation Research Board, Natural Research Council, National Academic Press, Washington, pp. 12–36.
  • Swets, J.A., 1988,  Measuring the accuracy of diagnostic systems. Science, No. 240, pp.1285-1293.‎
  • Sabokbar, H.F., Roodposhti, M.S., Tazik, E., 2014, Landslide susceptibility mapping using geographically-weighted principal component analysis, Geomorphology, No. 226, pp.15–24. doi: 10.1016/j.geomorph.2014.07.026.
  • Wheeler, D.C., 2014, Handbook of Regional Science. Springer; Berlin, Germany, Geographically weighted regression, pp. 1435–1459.
  • Wan, S., Chang, S.H., 2014, Combined particle swarm optimization and linear discriminant analysis for landslide image classification: Application to a case study in Taiwan. Environ. Earth Sci, No. 72, pp. 1453–1464. doi: 10.1007/s12665-014-3050-y.
  • Wang, H., Sassa, K., 2006, Rainfall-induced landslide hazard assessment using artificial neural networks. Earth Surf. Process. Landforms, No. 31, pp. 235–247. doi: 10.1002/esp.1236.
  • Xu, C., Dai, F., Xu, X., Lee, Y.H., 2012, GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, No. 145, pp. 70–80. doi: 10.1016/j.geomorph.2011.12.040
  • Yilmaz, I., 2009, Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison (case study: Kat landslides), Computer and Geosciences, No. 35, pp. 1125-1138.
  • Yao, X., Tham, L.G., Dai, F., 2008, Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China, Geomorphology, No. 101, pp. 572–582. doi: 10.1016/j.geomorph.2008.02.011.
  • Yao, X., Zhang, Y., Zhou, N., Guo, C., Yu, K., Li, L.J., 2014. Project Planning and Project ‎Success: The 25% Solution., Taylor & Francis Group; England, Application of two-class SVM ‎applied in landslide susceptibility mapping, p. 203.‎
  • Yalcin, A., Reis, S., Aydinoglu, A. C., Yomralioglu. T., 2011, A GIS-based comparative study of ‎frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for ‎landslide susceptibility mapping in Trabzon, NE Turkey. J. Catena, 85, pp. 274-287.‎
  • Zhang, L., Bi, H., Cheng, P., Davis, C.J., 2004, Modeling spatial variation in tree diameter–height relationships. For. Ecol. Manag, No. 189, pp. 317–329. doi: 10.1016/j.foreco.2003.09.004.