مقایسه مدل‌های رگرسیون لجستیک و بیزین رگرسیون لجستیک به منظور پیش‌بینی مکانی حرکت‌های توده‌ای استان کردستان

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه کردستان

چکیده

هدف از انجام این پژوهش ارائه روش ترکیبی بیزین رگرسیون لجستیک و مقایسه کارایی آن با روش رگرسیون لجستیک به منظور تهیه نقشه پیش بینی مکانی وقوع حرکت­های توده­ای در استان کردستان می­باشد. در ابتدا، بر اساس مرور منابع 18 عامل تأثیرگذار بر وقوع حرکت­های توده­ای شامل: درجه شیب، جهت شیب، ارتفاع، انحنای معمولی شیب، انحنای عرضی شیب، انحنای طولی شیب، شاخص توان حمل جریان، شاخص نمناکی توپوگرافی، شاخص طول و زاویة شیب، لیتولوژی، بارش، کاربری ارضی، فاصله از گسل، تراکم گسل، فاصله از رودخانه، تراکم رودخانه، فاصله از جاده و تراکم جاده انتخاب شدند. سپس، در روش رگرسیون لجستیک (LR) بر اساس سطح معنی­داری آماری 7 عامل و در روش بیزین لجستیک رگرسیون (BLR) بر اساس شاخص Information Gain Ratio، 11 عامل به عنوان عوامل مؤثر انتخاب و جهتمدل­سازی به کار گرفته شدند. ارزیابی مدل­ها (داده­های تعلیمی و داده­های تست) توسط معیارهای Specificity، Sensitivity، Accuracy، درصد مساحت زیر منحنی ROC و ریشه میانگین مربعات خطا انجام شدند. نتایج ارزیابی مدل­های مورد استفاده در این تحقیق نشان داد که اختلاف معنی­داری در سطح 95 درصد بین کارایی و نقشه­های پیش بینی مکانی تهیه شده برای مناطق حساس به وقوع حرکت های توده­ای خاک با روش­های BLR و LR مشاهده نشد و می­توان از مدل BLR نیز به مانند مدل LR به عنوان یک مدل معیار استفاده نمود. لذا با روش LR حدود 26 درصد از مساحت استان کردستان در معرض حساسیت زیاد و خیلی زیاد به وقوع حرکت های توده ای(54 درصد مجموع حرکتهای توده ای) قرار دارد و با روش BLR حدود 33 درصد از مساحت استان کردستان در معرض حساسیت زیاد و خیلی زیاد به وقوع حرکت های توده ای (64 درصد مجموع حرکتهای توده ای) قرار دارد که نواحی غرب استان دارای پتانسیل بیشتری هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison between Logistic Regression and Bayesian Logistic Regression for Spatial Prediction of Mass Movements in Kurdistan Province

نویسندگان [English]

  • kamran chapi
  • davod taleb poor
  • ataolah shirzadi
دانشگاه کردستان
چکیده [English]

Introduction
Geomorphological hazards such as mass movements are one of the potentially harmful phenomena. Landslides as one of the most traditional earth movements involved all slope failures in which a mass of materials (soil and rock) moves down the slope due to decreasing of safety factor and overcoming of the destructive forces on the resistance forces on a slope.
Kurdistan province has been frequently exposed to mass movement hazards owing to its characteristics of topography, geomorphology, pedology, geology and climatology. Therefore, the objective of this study is 1) to prepare the spatial prediction map of mass movements for the Kurdistan province to manage the areas prone to the hazards and to use the map in the land use planning projects and development of the rural regions 2) to introduce the Bayesian logistic regression (BLR) ensemble and to compare its efficiency with the logistic regression (LR), and 3) to identify the most significant conditioning factors on mass movements occurrence in the Kurdistan province.
Methodology
Based on the literature review, 18 factors affecting landslide susceptibility were selected for modeling including slope degree, slope aspect, elevation above sea, curvature, profile curvature, plan curvature, stream power index, topographic wetness index, length-angle of slope, lithology, rainfall, land use, distance to fault, fault density, distance to stream, stream density, distance to road, and road density. A total of 895 mass movements in the Kurdistan province were divided into 70 % (626 locations) for modelling using training dataset and 30% (269 locations) to evaluate based on the validation dataset. Additionally, 626 locations were randomly selected as areas where mass movements have not occurred and they were classified into 70% and 30% for training and validation in modelling process. Based on the Information Gain Ratio index to modelling process, 7 factors were then applied to the LR method and 11 factors were used in the BLR method. The evaluation of models were performed using Specificity, Sensitivity, Accuracy, the area under the Receiver Operating Characteristic Curve (AUROC), and the Root Mean Square of Errors (RMSE) indices.
Result and discussion
According to the results of spatial prediction of mass movements by quantile approach, about 8.06% of the Kurdistan province area is very sensitive to mass movement occurrence using the LR model; while, the BLR model shows a sensitive area of about 12.46%.   
The majority of very sensitive and sensitive areas are located to the west of the province. These regions include Oramanat mountainous areas, Kosalan and Chelchama highlands, the Salvatabad Saddle (East of Sanandaj), the Morvarid Saddle (between Sanandaj and Kamyaran), The Khan Saddle (between Saghez and Baneh), and the Arez Saddle (between Sanandaj and Marivan).
In order to assess the spatial map accuracy of mass movement sensitive areas prediction, both training and validating datasets were used. The results showed that the area under the curve of SRC is 0.714 in LR based on training data, indicating that this approach has a potential of 71.4 percent to predict sensitive areas to mass movement. BLR showed a value of 0.672 using the same data which implies a potential of 67.2% for prediction of sensitive areas.
Based on the validating dataset, the area under the curve of PRC was 0.732 and 0.729 for LR and BLR, respectively. These results confirmed the accuracy of the maps prepared by both models; however, it should be noted that LR was slightly providing better results.
To analyze the probability of mass movement occurrence, the potential of the LR and BLR models were evaluated using Friedman test at 5% significant level. The test revealed that there is no significant difference between these two models and both are reasonably able to evaluate spatial prediction of mass movements.
Conclusion
The results showed that there is no significant difference (95% level of significance) between the efficiency and the susceptibility maps prepared by the two models for spatial predicting of landslide in the study area; therefore, the BLR model can be applied as an index model for the study area and other similar areas.
Therefore the hybrid model of Bayesian Logistic Regression has a high capability of identifying sensitive areas to mass movement such that it can be compared with previously successfully testes methods such as artificial neural network, fuzzy logic, decision tree algorithms (Naïve, Random Forest, Baes Forest, …).

کلیدواژه‌ها [English]

  • Landslide
  • Bayesian Theory
  • logistic regression
  • Kurdistan province
  • اسفندیاری درآباد، فریبا؛ بهشتی جاوید، ابراهیم؛ فتحی، محمدحسین، 1393، پهنه­بندی حساسیت وقوع زمین لغزش با استفاده از تئوری بیزین(مطالعه موردی: حوضة آبریز سیاهرود)، مجله جغرافیا و مخاطرات محیطی، شماره12، صص. 18-1.
  • شیرزادی، عطااله، 1386، پهنه­بندی خطر حرکت­های توده­ای با استفاده از مدل منطقه­ای، پایان نامه کارشناسی ارشد، دانشگاه مازندران.
  • کرم، عبدالامیر؛ محمودی، فرج اله، 1384، مدل­سازی کمی و پهنه­بندی خطر زمین لغزش در زاگرس چین خورده (حوزه آبریز سرخون در استان چهار محال و بختیاری). مجله پژوهش­های جغرافیایی، شماره 51، صص. 14-1.
  • متولی، صدرالدین؛ اسماعیلی، رضا؛ حسین­زاده محمدمهدی، 1388، تعیین حساسیت وقوع زمین­لغزش با استفاده از رگرسیون لجستیک در حوضه آبریز واز (استان مازندران). فصلنامه جغرافیای طبیعی، شماره 5، صص. 84-73.
  • میرصانعی، روح الله؛ مهدویفر، محمدرضا، 1385، روش­ها و معیارهای بهینه جهت تهیه نقشه­های پهنه­بندی خطر زمین­لغزش، پژوهشکده سوانح طبیعی،  ص277.
  • نیرومند، حمیدرضا، 1374، ترجمه رگرسیون خطی کاربردی، مشهد، انتشارات آستان قدس رضوی، چاپ اول، ص. 419.
    • Akgun, A., Turk, N., 2011, mapping erosion susceptibility by a multivariate statistical method: a case study from the AyvalIk Region, NW Turkey. Computer Geosciences, Vol. 37, Pp. 1515–1524.
    • Althuwaynee, O.F., Biswajeet, P., Park, H-J., Lee, J.H., 2014, novel ensemble decision tree-based CHi-squared automatic interaction detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, Vol. 11(6), Pp. 1063–1078.
    • Arnone E., Francipane A.,Scarbaci A.,Puglisi C. and Noto L.V., 2016, Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping. Environmental Modelling and Software, 84: 467-481.
    • Avali Viji R, F. Cooper Gregory, MD and Vanathi Gopalakrishnan, 2014, Application of Bayesian Logistic Regression to Mining Biomedical Data, AMIA Annual Symposium Proceedings, Pp. 266–273.
    • Brabb E.E., 1984, Innovative approaches to landslide hazard and risk mapping. Proc. of the IV International Symposium on Landslides, Toronto, 1: 307-323.
    • Dahal R.K., Hasegawa S., Nonomura A., Yamanaka M., Masuda T. and Nishino, K., 2008, GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping, Environmental Geology, 54(2):311-324.
    • Dehnavi, A., Aghdam, I.N., Pradhan, B., Varzandeh, M.H.M., 2015, A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena, Vol. 135, Pp. 122-148.
    • Derrac, J., García, S., Molina, D., Herrera, F., 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evol Comput 1:3–18.
    • Dou, J., Yamagishi, H., Pourghasemi H-R., Yunus, A-P., Song, X., Xu, Y., Zhu, Zh., 2015, An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, Vol. 78, Pp. 1749–1776.
    • Dubois, D., Prade, H., 1990, Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, Vol. 17, Pp.191–209.
    • Friedman, M., 1937, the use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. Vol. 32, Pp. 675–701.
    • Gokhan, D., Mustafa, A and Aykut, A., 2014, Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example Niksar-Resadiye (Tokat, Turkey), Arabian Journal of Geosciences, 15 pp.
    • Grabs, T., Seibert, J., Bishop, K., and Laudon, H., 2009, “Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model”. Journal of Hydrology. Vol. 373, Pp. 15-23.
    • Guha S., Below R P.h. and Hoyois P.h., (2015, EM-DAT: International Disaster Database - www.emdat.be – Université Catholique de Louvain.
    • Haque U., Blum P., da Silva P.F., Andersen P., Pilz J., Chalov S.R., Malet J.P., Auflič M.J., Andres N., Poyiadji E. and Lamas P.C., 2016, Fatal landslides in Europe. Landslides, 13(6):1545-1554.
    • Hunter, E., Matin, J., Stone, P., 1966, Experiments in induction. Academic, New York.
    • Hong, H., Pradhan, B., Xu, C., Bui, D.T., 2015, Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266-281.
    • Jaedicke C., Van Den Eeckhaut M., Nadim F., Hervas J., Kalsnes B., Vangelsten BV., Smith JT., Tofani V., Ciurean R., Winter MG., Sverdrup-Thygeson K., Syre E., Smebye H., 2014, Identification of landslide hazard and risk ‘hotspots’ in Europe. Bulletin of Engineering Geology and the Environment, 73:325-339.
    • Kononenko, I., 1994, estimating attributes: analysis and extensions of relief. In: Bergadano, F., Raedt, L. (Eds.) Machine learning: ECML-94. Springer, Berlin, Pp. 171–182.
    • Keesstra S.D., Quinton J.N., van der Putten W.H., Bardgett R.D. and Fresco L.O., 2016, The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2: 111-128.
    • Kothyari, U., Jain, M., and Raju, K.G.R., 2002, “Estimation of temporal variation of sediment yield using GIS”. Hydrological Sciences-Journal-des Sciences Hydrologiques. Vol. 47, Pp. 693-706.
    • Martínez-Álvarez F, Reyes J, Morales-Esteban A, Rubio-Escudero C., 2013, determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula. Knowl-Based Syst. Vol. 50, Pp.198–210.
    • Moore, I.D. and Grayson, R.B., 1991, “Landson. Digital terrain modeling: A review of hydrological, Geomorphological and Biological application”. Hydrol. Process. Vol. 5, pp. 3-30.
    • Moore, I.D. and Wilson, J. P., 1992, “Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation”. Journal of Soil and Water Conserve. 47, pp. 423-428.
    • Nandi, A., Shakoor, A., 2010, A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology. Vol. 110, Pp.11–20.
    • Lan H.X, Zhou C. H, Wang L.J. Zhang, H.Y. and Li, R.H, 2004, Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang Watershed, Yunnan, China. Engineering Geology, 76: 109-128.
    • Quinlan, J.R., 1993, C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CA, USA.
    • Stocking M. and Murnaghan N., 2001, Handbook for the field assessment of land degradation. Earth scan.
    • Sujatha, E.R., Kumaravel, P., Rajamanickam, V.G., 2012, Landslide Susceptibility Mapping Using Remotely Sensed Data through Conditional Probability Analysis Using Seed Cell and Point Sampling Techniques. Journal of the Indian Society of Remote Sensing, Vol. 40(4), Pp. 669-678.
    • Shirzadi, A., Saro, L., Hyun-Joo, Oh and Chapi, K., 2012, A GIS-based logistic regression model in rock fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural Hazard, Vol. 64, Pp. 1639-1656.
    • Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B., 2012, Landslide susceptibility mapping at HoaBinh province (Vietnam) using an adaptive neuro fuzzy inference system and GIS. Computers & Geosciences, Vol. 45, Pp. 199–211.
    • Tsai, F., Lai, J-S., Chen, W.W., Lin, T-H., 2013, Analysis of topographic and vegetative factors with data mining for landslide verification. Ecological Engineering, Vol. 61, Pp. 669-677.
    • Tien Bui, D., Pradhan, B., Revhaug, I., Trung Tran, C., 2014, A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 Decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam. In: Srivastava, P.K., Mukherjee, S., Gupta, M., Islam, T. (Eds.), Remote Sensing Applications in Environmental Research. Springer International Publishing, Pp. 87–111.
    • Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I., 2015, spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, http://dx.doi.org/10.1007/s10346-015-0557-6.
    • Tehrany, M.S., Pradhan, B., Jebur, M.N., 2014, Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, Vol. 512, Pp. 332-343.
    • Umar, Z., Pradhan, B., Ahmad, A., Neamah Jebur, M., Shafapour Tehrany, M., 2014, Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, Vol. 118, Pp. 124–135.
    • Vandromme R., Thiéry Y., Sedan O. and Bernardie S., 2016, An integrated approach coupling physically based models and probabilistic method to assess quantitatively landslide susceptibility at different scale: application to different geomorphological environments. In EGU General Assembly Conference Abstracts, 18: p. 13282.
    • Witten, I.H., Frank, E., Mark, A.H., 2011, Data mining: practical machine learning tools and techniques (third edition). Morgan Kaufmann, Burlington.
    • Wang, L-J., Sawada K., Moriguchi S., 2013, Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers and Geosciences, Vol. 57, Pp. 81–92.
    • Xu, C., Xu, X., Dai, F., Xiao, J., Tan, X., Yuan, R., 2012, Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, Vol. 23, Pp. 97–120.
    • Xiaomeng, W., Borgelt, C., 2004, Information measures in fuzzy decision trees. Fuzzy Systems, 2004 Proceedings 2004 I.E. International Conference on. Vol. 81, Pp. 85–90.
    • Zare, M., Pourghasemi, H., Vafakhah, M., Pradhan, B., 2013, Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, Vol. 6, Pp. 2873–2888.