عمق سنجی از نواحی کم عمق ساحلی با استفاده از تصاویر لندست-8 به طریق آموزش شبکه عصبی (مطالعه موردی: جنوب شرقی دریای خزر)

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه تهران

چکیده

تصاویر سنجش ­از­دور ابزاری مناسب جهت برآورد عمق در مناطق ساحلی است. در این پژوهش، به منظور مطالعه مناطق کم­ عمق ساحلی، از تصاویر لندست-8 و داده­های هیدروگرافی که با روش اکوساندر جمع­ آوری شده استفاده شده است. هدف از این پژوهش، عمق سنجی از نواحی جنوب شرقی ساحل دریای خزر از طریق آموزش شبکه عصبی است. تصحیح اتمسفری Dark Object Subtract (DOS)، تصحیح رادیومتریکی (تبدیل درجات روشنایی به بازتاب)، تصحیح درخشندگی خورشید و در نهایت ماسک کردن مناطق آبی از مناطق خشکی، از جمله پیش­پردازش­های لازم است که بر روی باندهای آبی­ساحلی، آبی، سبز و قرمز تصویر لندست-8 اعمال شده است. در این پژوهش برآورد عمق از طریق شبکه عصبی در دو حالت بررسی گردد. در حالت اول، هر یک از چهار باند به عنوان داده­های ورودی و داده­های عمق متناظر با هر یک از این پیکسل­ها به عنوان هدف به شبکه عصبی معرفی گردید. و در حالت دوم، داده­های عمق به روش میانگین فازی، به شش کلاس تقسیم­بندی شدند و اطلاعات هر کلاس بصورت جداگانه به شبکه ارائه شد. در هر دو حالت مورد بررسی، سهم داده­های آموزشی، داده­های اعتبارسنجی و داده­های آزمون از داده­های ورودی به ترتیب 60 درصد، 10 درصد و 30 درصد می­باشد. نتایج حاصل از شبکه عصبی نشان می­دهد که دقت عمق برآورد شده در کلاسه­های مختلف، متفاوت است و بیشترین دقت ( RMSE =0.11و0.90  R2 =) و کمترین دقت ( RMSE =0.11و0.67  R2 =) به ترتیب به محدوده عمق­های 97/3- تا 1/3- و 48/4- تا 4- اختصاص دارد. در حالیکه عمق برآورد شده از داده­های کل (کلاسه­بندی نشده) معادل  R2 = 0.94و  RMSE =0.16متر بدست آمد. از این رو، با آموزش شبکه عصبی می­توان به برآورد عمق از نواحی کم عمق ساحلی با دقت بالا پرداخت.
 

کلیدواژه‌ها


عنوان مقاله [English]

Bathymetry from Shallow Coastal Environment using Neural Network(Case Study: Southeastern of the Caspian Sea)

نویسندگان [English]

  • Leila Amini
  • Ataollah Abdollahi Kakroodi
چکیده [English]

Remote sensing method known an appropriate tool for estimating depth in the coastal environment of the limited reaches. The purpose of this study is to measure the depth of the southeastern coast of the Caspian Sea through the training of the neural network. In order to estimate depth, Landsat-8 images and hydrographic data collected using the echosounder, have been used. Atmospheric correction of Dark Object Subtract (DOS), radiometric correction (turning digital number to reflection), the sun glint correction, and eventually masking the water body from the land area, applied on the coastal blue, blue, green and red bands. These steps known as pre-processing.
In this study, depth estimation through the neural network is investigated in two states. In the first case, each of the four bands as input and real depth corresponding to each of these pixels as target was introduced to the neural network. In the second case, the depth data were clustered to seven clusters by the fuzzy C-mean (FCM) method. After clustering, the data of each cluster was separately presented to the network. In both cases, the share of train data, validation data and test data from input data is 60%, 10% and 30%, respectively. The results of the neural network indicate that the accuracy of the estimated depth in various clusters is different, and the highest accuracy (R2 = 0.90, RMSE= 0.11) and the lowest accuracy (R2 = 0.67, RMSE= 0.11) belong to cluster (1) and cluster (3) respectively. As well as, the estimated depth in no clustered data, evaluated with high accuracy )R2 = 0.98, RMSE = 0.16).Then, neural network method is able to estimate depth from shallow coastal waters with high accuracy.
 

کلیدواژه‌ها [English]

  • Bathymetry
  • Landsat-8
  • Fuzzy Clustering
  • Neural Network
  • southeastern of Caspian Sea
  • احمدیان شالچی، نسرین، 1387، چشم­اندازهای جغرافیایی ایران/ دریاها، چاپ اول، انتشارات بنیاد پژوهش­های اسلامی، مشهد.
  • فتحی، محمد؛ زمانی اسکویی، فرینا، 1395، برنامه­نویسی متلب، چاپ اول، انتشارات کانون نشر علوم، تهران.
  • کمالی دهکردی؛ پروانه، نظیفی نائینی؛ مینو، کبیریان، 1394، آموزش شبکه­های عصبی در SPSS، انتشارات پژوهش­های ما، تهران.
  • کمیجانی، اکبر؛ سعادت فر، جعفر، 1385، کاربردهای مدل­های شبکه عصبی در پیش­بینی ورشکستگی اقتصادی شرکت­های بازار بورس، دو فصلنامه علمی-پژوهشی جستارهای اقتصادی. سال سوم، شماره ششم، پاییز و زمستان 1385، صص 240- 271.
  •  Bezdek, JC. (1981) Pattern Recognition with Fuzzy Objective Algorithms. Plenum Press              New.
  • Bramante, JF. Raju, .DK Sin, (2013) TM Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int J Remote Sens 34(6):2070–2088. doi:10.1080/01431161.2012.734934.
  • Brouthers, L., Mukhopadhyay, S. Wilkinson, T. Brouthers, .K (2009) International Market Selection and Subsidiary Performance: A Neural Network Approach, Journal of World Business. No. 44, PP. 262–273.
  • Calkoen, C.J., Hesselmans, G.H.F.M., Wensink, G.J. and Vogelzang, J. (2001) The   Bathymetry Assessment System: Efficient Depth Mapping in Shallow Seas Using Radar Images. International Journal of Remote Sensing, 22, 2973-
  • Ceyhun, Ö. Yalçın, A. (2010) Remote sensing of water depths in shallow waters via artificial neural networks. Estuar Coast Shelf Sci 89(1): 89–96.
  • Clay, C. (1998) Fundamentals of Acoustical Oceanography. Academic Press,    New York. http://www.waterencyclopedia.com/Oc-Po/Ocean-Floor-Bathymetry 
  • doi:10.1016/j.ecss.2010.05.015.
  • Feurer, D. Bailly, J. Puech, C. Le Coarer, Y. and Viau, A. “Very-high resolution mapping of river-immersed topography by remote sensing,”Progr. Phys. Geogr., vol. 32, no. 4, pp. 403–419, Aug. 2008.
  • Gholamalifard, M. Kutser, T. Esmaili Abkar, A. Naimi, A. (2013) Remotely sensed empirical modeling of bathymetry in the southeastern Caspian Sea. Remote Sens 5(6):2746–2762. doi: 10.3390/rs5062746.
  • Hathaway RJ, Bezdek JC. Fuzzy c-means clustering of incomplete data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2001; 31(5):735-44.
  • Hedley, J. D.  Harborne, A. R. and Mumby, P. J. (2005) Simple and robust removal of sun glint for mapping shallow-water benthos. International Journal of Remote Sensing.
 

  • Huang, S. Tsai, C.Yen, D. Cheng Y.(2008) A Hybrid Financial Analysis Model for   Business Failure Prediction, Expert Systems with Applications No. 35,PP. 1034–1040.
  • Jagalingam, P., Akshaya, B.J and Arkal, V, H., 2015, Bathymetry mapping using Landsat 8 Satellite Imagery, 8th International Conference on Asian and Pacific Coasts (APAC 2015).
  • Jang JS. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics. 1993; 23(3):665-85.
  • Lyzenga, D.R. (1985) Shallow-Water Bathymetry Using Combined Lidar and Passive Multispectral Scanner Data. International Journal of Remote Sensing, 6, 115-125.
  • Nazeer, M. Nichols, J.E. & Yung, Y. (2014) Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. International Journal of Remote Sensing, 35(16), 6271–6291.
  • Priddy, K. L. Keller, & P. E. (2005) Artificial Neural Networks: An introduction,    Publication: SPIE, Belling.
  • Roberts, A.C.B. and Anderson, .J.M. (1999) Shallow Water Bathymetry Using Integrated    Airborne Multi-Spectral Remote Sensing. International Journal of Remote Sensing, 20, 497-510. http://dx.doi.org/10.1080/014311699213299.
 

 

  • Stumpf, R. Holderied, K.Sinclair, M.  (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limonology and Oceanography 48:547–556. doi:10.4319/lo.2003.48.1_part_2.0547.
  • Su, H. Liu, H. Heyman, W. )2008( Automated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model. Mar Geod 31:281–298.
  • Thieme, R. Song, M. Calantone, R.J. (2000) Artificial Neural Network Decision Support Systems for New Product Development Project Selection, JMR, Journal of Marketing Research, Chicago: Vol. 37, Iss. 4; PP. 499-507.