تأثیر تغییر مقاطع عرضی بر طغیان و ظرفیت انتقال رسوب رودخانه آبشینه همدان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ملایر

2 ملایر ،دانشگاه ملایر، دانشکده منابع طبیعی، گروه مرتع و آبخیزداری

چکیده

امروزه تحلیل و شبیه‌سازی طغیان و انتقال رسوب با مدل‌های مهندسی رودخانه کاربرد فراوانی در هیدرولیک جریان دارند. هدف از این تحقیق، شبیه‌سازی تأثیر تغییر شکل هندسی ‌مقاطع عرضی -رودخانه آبشینه همدان بر فرآیندهای جریان و انتقال رسوب با استفاده از نرم‌افزار SMADA و شبیه-سازی هیدرولیکی رودخانه با مدل HEC-RAS می‌باشد. بررسی‌ها نشان می‌دهد که تغییرات عرضی رودخانة آبشینه به تغییرات مکانی الگوی کنش (فرسایش و رسوب‌گذاری) نسبت داده می‌‌شود که به دلیل تکرار و فراوانی وقوع سیلاب‌های منفرد و بزرگ می‌باشد. همچنین به دلیل فرآیند فرسایش، افزایش سرعت آب و شیب زیاد، مقاطع عرضی بالا دستV شکل بوده و مقاطع میانی به دلیل فرآیند فرسایش و رسوبگذاری به شکلU و در انتهای مسیر به دلیل وجود سد اکباتان و باز شدگی بستر فرآیند انباشت رخ می‌دهد. نتایج حاصل از مدل HEC-RAS نشان می‌دهد که مقدار ظرفیت انتقال رسوب با رواناب و سرعت جریان رابطه مستقیم داشته و میزان رسوب از مقدار دبی و بارش تأثیر می-پذیرد و بیانگر این است که در مقطع عرضی از دوازده کیلومتری پایین دست تا مقطع عرضی موجود در نزدیکی سد، میزان جریان رسوب نمی‌تواند از بستر رودخانه و کناره‌ها طغیان کند لذا خطری برای مناطق حاشیه رودخانه در پی نخواهد داشت. اما در مقطع عرضی هشت کیلومتری پایین دست حوضه میزان دبی عبوری و رسوب از ظرفیت این مقطع بالا بوده و برای جلوگیری از انباشته شدن رسوبات و بالا آمدن بستر و طغیان رودخانه در این بازه، باید مدیریت لازم و ساماندهی مهندسی رودخانه انجام گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect Transition sections change on flood and sediment transport capacity Abshineh River of Hamedan

نویسندگان [English]

  • shahla Azizi
  • Alireza ildoromi 1
  • Hamid Nouri 2
چکیده [English]

The effect Transition sections change on flood And sediment transport capacity Abshineh River of Hamedan

Abstract
The use of river engineering models in flood simulation and sediment transport is a common use in hydraulic flow. The purpose of this study was to simulate the effect of geometric geometric deformation of the Hamedan Aqueduct Ridge on flow processes and sediment transport during different return periods using SMADA software and HEC-RAS model. The results of the HEC-RAS model show that the flow of sediment can not flood the river bed and its sides in a transverse section from a distance of twelve kilometers downstream to the transverse section near the dam, so the danger to the river boundary areas in It will not be. But at a crossroads of eight kilometers downstream of the basin, the amount of discharge and sediment discharge is high at this level and river engineering must be organized to prevent accumulation of sediments and river floods.
Key words: Morphology, erosion and sedimentation, HEC-RAS, Abshinehh

Introduction
The flow of water in the river is a dynamic phenomenon that is constantly changing and displacing. Various mathematical relations such as HEC-6, HEC-RAS, SSIM, MIKE21, GSTAR, FLUVIAL are used to understand the phenomenon of riverbed displacement and displacement. Using the sediment transport equations and different methods for calculating particle velocity in the HEC-RAS model, river bed transformation can be studied and predicted. The results of the studies show that the sediment transport equations are not very sensitive to the particle velocity calculation in modeling the shape of the river bed shape, and the major difference in the results depends on the type of sediment transport equation used.The purpose of this study is to study the effect of changes in the section of the Abshineh River on the processes governing sediment transport capacity and the determination of flood sections using the HEC-RAS model, so that it can be used to control flood, sedimentation and seismicity Made

Material and Methods
The study area
The catchment area of Ekbatan Dam is located in the south-east of Hamedan city and is one of the sub-basins of the Ghare-Chay River, located in the southwest of Alvand Mountain. Abshineh River is one of the most important sections of the Gharacheh watershed which flows from the northern slopes of Alvand Sarcheshmeh Mountain and enters the dam of Ekbatan-e Hamadan. The river's regime is under a semi-humid semi-humid climate of snowy, rainy and permanent mountains. The average annual rainfall is 312.9 mm and the average annual temperature is 11.3 ° C.
Research Methodology
In order to simulate the effect of geometric geometric deformation of Abshineh River transverse sections on flow and sediment flow processes, we first selected 6 cross sections of the river, and by sampling the sides and soil mechanics tests, particle diameter and bed gravel, then the maximum discharge Moments with different return periods were calculated using the SMADA software and introduced into the HEC-RAS model for hydraulic simulation of the river. and in Finally, the effect of section changes on the flow velocity, transfer capacity and sediment accumulation were analyzed and evaluated.



Results and discussion
The study of discharge and sediment showed that runoff had the most effect on river morphology, which, with the process of erosion and sedimentation, changed transversely. Also due to the size of the particle diameter of the river, the erosion process, the velocity of the water and the slope, the transverse sections of the upper hand V formed and in which the bottleneck was observed. While in the middle sections due to the erosion and sedimentation process, the transverse sections of the river in the shape of U and at the end of the path, due to the presence of Ekbatan Dam and the process of accumulation, have been subjected to a change in morphology. Studies show that runoff has the most impact on river morphology and the amount of sediment transport capacity is directly related to the flow velocity, which increases the flow capacity of the sediment transport, and vice versa. . The results of the model simulated simulation during the 50-year return period show that the flow rate can not flood the riverbed and the sides of the river at a distance of twelve kilometers below the bottom of the dam, resulting in a danger to the areas The boundary of the river and its lands will not be followed. But at the crossroads, located eight kilometers downstream of the basin, the discharge rate and sediment discharge from this section are high. This causes accumulation of sediments and flooding of the river in these places. And can cover the boundaries of the river.
Conclusion
Nowday The study of the effect of river cross-sectional changes on the processes governing sediment transport capacity and the determination of flood sections using the HEC-RAS model has been considered by water resource planners and planners. The results showed that the transverse sections of the V-shaped arm and the middle sections were changed to U-shape. In addition, at the end of the Abshineh River, the cross section has been transformed into tensile form. The most important reasons for changing the morphology of the transverse sections of the Abshineh River include the difference in bedding and surface changes, depth and speed of water flow, and erosion and sedimentation. The results of the HEC-RAS model showed that the river is not capable of flooding from its bed at a cross-section of twelve kilometers downstream to the transverse section near the dam. But at a crossroads of eight kilometers downstream, the amount of discharge flowing from this section is high and with accumulation of sediments in this range, the bed will rise and the river flood will occur. Therefore, it is necessary at this point to manage and organize river engineering and engineering.

کلیدواژه‌ها [English]

  • morphology
  • erosion and sedimentation
  • HEC-RAS
  • Abshinehh
  • ابوالفتحی، داریوش؛ مددی، عقیل؛ اصغری، صیاد،­ 1397، مدلسازی میزان رسوب رودخانه به کمک روش شبکه عصبی  مصنوعی ( نمونه موردی­: رودخانه گلرود )، نشریه پژوهش­های ژئومورفولوژی کمی، سال 7، شماره 2، صص  208– 196.
  • اسدی­، فاطمه؛ فضل اولی­، رامین؛  عمادی، علیرضا، 1396، بررسی تغییرات بستر رودخانه با استفاده از مدل  HEC-RAS­ (مطالعه موردی: رودخانه تالار)، پژوهشنامه مدیریت حوضه آبخیز، سال 8،  شماره 15، صص25-35.
  • اجدادی، مهران؛ محمودیان، محمد، 1387، برآورد بار معلق رسوب با استفاده از شبکه­های عصبی مصنوعی و سیستم استنتاجی فازی-­عصبی تطبیقی و مقایسه با نتایج روش اینشتین (مطالعه موردی: رودخانه بالخی چای، ایستگاه سامیان اردبیل)، سومین کنفرانس مدیریت منابع آب، دانشگاه تبریز، 9ص.
  • احمدی، حسن، 1392، سیستم تحلیل رودخانه HEC-RAS، تهران، جهاد دانشگاهی، واحد صنعتی امیر­کبیر.
  • اکبری، غلامحسین؛ مغربی، محمود؛ تارم، صابر، 1390، بررسی ترکیب معادلات انتقال رسوب و روش­های محاسبه سرعت سقوط ذرات در مدل­سازی تغییر فرم بستر رودخانه، ششمین کنگره ملی مهندسی عمران، دانشگاه سمنان.
  • اکبرزاده، نیره؛ مجدزاده، محمد رضا؛ قریشی، حسین،1390، صحت سنجی توابع انتقال رسوب و تاثیر پارامترهای هیدرولیکی بر چگونگی شبیه­سازی رسوبگذاری مخزن سد شهید عباسپور با استفاده از مدل عددی HEC-RAS. ششمین کنگره ملی مهندسی عمران، دانشگاه سمنان.
  • امامقلی­زاده، صمد؛ شیردل،­ سولماز؛ گنجویان، محمدعلی؛ فتحی مقدم، منوچهر، 1389، بررسی وضعیت فرسایش و رسوبگذاری رودخانه شیرین دره با استفاده از مدل ریاضی HEC-RAS، مجله مهندسی آب، سال 1، شماره 1، صص 19-34.
  • ایلدرمی، علیرضا؛ شیخی پور، آزاده، 1395، بررسی تغییرات مورفولوژیکی رودخانه و نقش آن در فرسایش و رسوبگذاری با استفاده از مدل HEC–RAS (مطالعه موردی: رودخانه خرم آباد–دوآب ویسان)، پژوهش­های ژئومورفولوژی کمی، جلد 5، شماره 3، صص 146- 163.
  • حاجی بیگلو، محبوبه؛ دستورانی، محمد تقی؛  قزل سوفلو، عباسعلی؛ اختصاصی، محمد رضا­، 1392، تغییرات موفولوژیکی رودخانه و ارتباط آن با فرآیندهای حاکم (مطالعه موردی: رودخانه فیروزه – شاهجوب)، نشریه مرتع و آبخیز­داری، مجله منابع طبیعی ایران، دوره 66، شماره 1.
  • ر­ه نورد، مجتبی؛ ره نورد، محمد؛ محمودیان شوشتری، محمد؛ طالب بیدختی، ناصر، 1391، شبیه سازی انتقال رسوب رودخانه دز (بازه بین ایستگاه حرمله تا بامدژ) ، مجله مهندسی منابع آب، سال 5، صص 99-109.
  • روستایی، شهرام؛ خورشید دوست، علی محمد؛ خالقی، سمیه، 1392، ارزیابی مورفولوژی مجرای رودخانه لیقوان با روش طبقه بندی راسکن، نشریه پژوهش­های ژئومورفولوژی کمی، شماره 4 ، صص 16-1.
  • شیخ علیشاهی، نجمه؛ جمالی، علی اکبر؛ حسن زاده نفوتی، محمد، 1395، پهنه بندی سیل با استفاده از مدل هیدرولیکی تحلیل رودخانه (مطالعه موردی­: حوضه آ­بریز منشاد استان یزد­)، فصلنامه علمی– پژوهشی فضای جغرافیای، جلد 16، شماره 53، صص 77- 96.
  • صف شکن، فرشید؛ پیر مرادیان، نادر؛ افشین شریفان، رضا، 1396، ارزیابی ­و مقایسه روش شبکه عصبی و مدل HEC –  RASدر شبیه سازی آبنمود بارش­–­رواناب در حوضه آبخیز کسیلیان، مجله مهندسی منابع  آب، سال 10.
  • لشکری، حسن؛ ­رشیدی، علی؛ رضایی، علی، 1392، پهنه بندی سیلاب رودخانه زرینه رود با استفاده از مدل هیدرولیکی­ HEC – RAS در محیط GIS، مجله پژوهش­های دانش زمین، جلد 3، شماره 13، صص 51- 68.
  • یاسی، مهدی؛ نصیری، لعیا؛ احمدی، سلطان، 1396، شبیه سازی و ارزیابی جریان رودخانه های با جران دائمی با دو مدل HEC – RAS  و RubarBE، نشریه دانش آب و خاک، جلد 27، شماره 2، صص 225 تا 236.
  • یمانی، مجتبی؛ مقصودی، مهران؛ محمد خان، شیرین؛ مرادی، انور، 1394، طبقه بندی مورفولوژیکی آبراهه رودخانه تلوار براساس روش رزگن و کارایی آن (حد فاصل روستای کچی گرد تا حسن خان)، پژوهش­های دانش زمین، سال 6، شماره 23، صص 1-18.
    • Pappenberger, F., Beven, K., Horritt, M. and Blazkova, S., 2005. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of hydrology, 302 (1-4), pp.46-69.
  • بیاتی­خطیبی، مریم، 1391، بررسی و تحلیل نوع و مدت جابه­جایی­ها در مسیر رودخانه­های مئاندری و نقش جابه­جایی­ها در فرسایش کناری در نواحی نیمه­خشک مطالعه موردی: رودخانه قره­آغاج، جغرافیا و توسعه، شماره 27.
  • خیری زاده آروق، منصور؛ رضایی مقدم، محمد حسین؛ رجبی، معصومه؛ دانشفر، رسول­،1396، تحلیل تغییرات جانبی مجرای رودخانه زرینه رود با استفاده از روش­های ژئومورفومتریکی، ­نشریه پژوهش­های ژئومورفولوژی کمی، جلد5 ، شماره 4، صص 102-76.
  • یمانی، مجتبی؛ رحیمی، مسعود؛ ویسی، عبدالکریم ،1394، مورفومتری و مقایسه تغییرات عرضی رودخانه ارس طی سه دهه اخیر مطالعه موردی­: پایین دست سد میغان، نشریه پژوهش­های ژئومورفولوژی کمی، سال 3 ، شماره 4 ،  صص. 89- 74.
  • Ashouri ,  M.,  Rezaei  Moghaddam, and M.H.,  Piry,  Z., 2009.  Morphologic Change Assessment of Riverbed Before and after Dam Construction Using HEC RAS  Model  and  GIS  (Case  Study:  Downstream  of  Satarkhan  Dam), Physical Geography Research Quarterly, 45(1), pp.87-100
  • Azizian, A., Noormohammadi, S., and Behroozian, M., 2010. Calibration of the results of HEC-HMS numerical model in ungaunged catchments (Case study: Zawarian river), 6th national conference on watershed management sciences and engineering, Noor, Iran.
  • Cook, A. C., 2008. Comparison of one­–­dimensional HEC-RAS with two­– dimensional FESWMS model in flood inundation mapping, MSc thesis, Purdue university, USA
  • Gibson, S., Brunner, G., and Jensen, M., 2006. Sediment transport computations with HEC-RAS. Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), April 2-6, Reno, NV, USA.
  • Hazarika, M.H., Bormudoi, A., Phosalath, S., Sengtianthr, V. and Samarakoon, L., 2005. Flood hazard in savanakhet province, Lao PDR mapping user HEC RAS, remote sensing and GIS, Journal of hydrology, 302(2-3), pp.1-7.
  • Jebeli Fard, S.,Omidvar, A., and  Najafi jilani, A., 1998. The Analizing of River System by HEC-RAS Model, Jahade Daneshgahi Amir Kabir Publications, third edition.
  • Lorang, M.S.,  and Aggett. G., 2005. Potential sedimentation impacts related to dam removal: Icicle Creek, Washington, U.S.A.
  • Shi, Z.H., Fang, N.F., Wu, F.Z., Wang, L., Yue, B.J.,  and Wu, G. L., 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 123(130), pp. 2747-2760.
  • Stevenson, D., 2009. 1D HEC- RAS model and sensivity analysis for River Clair from 1971–2007. report prepared for international joint commission, international upper Great Lakes study, Ottawa.
  • USACE., 2010. HEC-RAS River Analysis System, Reference Manual for Version 4.1.0 Report CPD-69, Hydrologic Engineering Center, Davis, CA.