بررسی تغییرات اقلیمی و محیطی کواترنری پایانی با استفاده از کانی‌شناسی رس ها در پلایای گاوخونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی دانشگاه اصفهان

2 استادیار دانشکده علوم جغرافیا و برنامه ریزی، دانشگاه اصفهان

3 دانشیار پژوهشکده علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور.

4 کارشناس دفتر بررسی‌های زمین‌شناسی دریایی، سازمان زمین شناسی و اکتشافات معدنی کشور.

10.22034/gmpj.2021.131009

چکیده

جهت بررسی‌ تغییرات اقلیمی براساس کانی‌شناسی رس ها 16 مغزه رسوبی با استفاده از مغزه گیر دستی از رسوبات بستر پلایای گاوخونی و زمین‌های اطراف برداشت شد. تعداد 90 نمونه از 9 مغزه رسوبی برداشت و جهت آنالیز پراش اشعه ایکس به آزمایشگاه ارسال شد. نتایج حاصل از پراش اشعه ایکس، نشان می‌دهد که رسوبات در پلایای گاوخونی به ترتیب فراوانی حاوی کانی‌های رسی ایلیت، کلریت، مونت‌موریلونیت، کائولینیت می‌باشد. همچنین به عنوان کانی‌های اصلی، کوارتز، کلسیت، فلدسپار، کانی‌های تبخیری و دولومیت نیز در پیک گراف‌ها دیده میشوند. آنالیز سن‌سنجی به روش ایزوتوپی کربن 14 ، نرخ رسوبگذاری در بخش‌های غربی حدود 4/0 میلی متر و بخش‌های شرقی را 25/0 میلی‌متر درسال نشان داد. با توجه به نرخ رسوبگذاری و عمق مغزه‌های برداشت شده، تغییرات اقلیمی حداکثر در 40 هزار سال گذشته بازسازی شد. در پلیستوسن پسین اقلیم منطقه گاوخونی مرطوب‌تر از زمان حال بوده است. این شرایط که با حضور کانی های کائولینیت و مونت مورلونیت تا 18 هزار سال گذشته ادامه داشته و باعث پیشروی خطوط ساحلی شده است. بعد از آن تا اوایل هولوسن (12 هزار سال گذشته) با کاهش تدریجی رطوبت و پسروی ساحل همراه بوده است. با شروع هولوسن دوره خشک بصورت تدریجی ایجاد شده است و در حدود 8 هزار سال قبل به اوج خود رسیده است. در هولوسن میانی و پسین مجددا شرایط رطوبتی بوجود آمده و همچنین در حدود هزار سال پیش اقلیم نیمه خشک حاکم شده است که با افزایش در میزان نهشته های تبخیری‌ همراه بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Climate and Environmental Changes in Late Quaternary Using Clay Mineralogy in Gavkhoni Playa

نویسندگان [English]

  • Tahereh Jalilian 1
  • alireza Taghian 2
  • Razyeh Lak 3
  • javad darvishi khatooni 4
1 PhD Candidate of Geomorphology, Faculty of Geographical Sciences and Planning, University of Isfahan
2 Department of Geography, isfahan university
3 GSI
4 GSI
چکیده [English]

Introduction
The sediments of the Playa lake are sensitive indicators of local climates that any change in climate, hydrology, and sedimentary environment will cause changes in the physical and chemical properties of the sediments. These sediments create a valuable and important archive with high resolution to examine these changes in the past. One method of studying climate change during quaternary and often Holocene is the study of clay minerals in sedimentary cores harvested from wetlands and lakes. The study of clay minerals in these sediments can help to more accurately identify and re-read their past history and be used to determine the severity of weathering processes and also to investigate possible climate change. Clay minerals are highly efficient in hot and humid environments with high chemical decomposition, for detecting climate change, and in cold environments as a factor in identifying the source of sediments.
Materials and methods
To perform this study, 16 sedimentary cores were harvested using a manual core drilling equipment with an average depth of 7 m and a maximum depth of 11.5 m from the sub sediments of the Gavkhoni playa and surrounding areas. The core was described based on texture, sedimentary structure, and layering characteristics, color, plant and shell remains, the type of evaporative crystals, and the relative degree of hardening of the sediments, and their chronological column was plotted. 90 samples from 9 sedimentary cores were prepared for X-ray diffraction analysis (XRD) and sent to the laboratory. Also, to extract the age of sedimentary sequences, three samples of C14-AMS bulk sedimentary materials were analyzed and calibrated with OxCal software (Bronk Ramesy, 2013) with an error range of 2 Sigma and confidence level of 95%.
Discussion and results
The results of X-ray diffraction show that the sediments in the Gavkhoni playa in order of abundance contain clay ellite, chlorite, montmorillonite, and kaolinite deposits, respectively. They are also seen as the main minerals of quartz, calcite, feldspar, evaporative and dolomite minerals in graph peaks. According to the results of the metering analysis, the sedimentation rate in the western parts is about 0.4 mm per year and in the eastern parts is 0.25 mm per year. The clay minerals of Sepiolite, Polygorskite, and Kunzite have not been observed in sedimentary cores. These minerals are specific to the diagenetic environments, indicating no effect of very low effect of the conversion type of diagenesis in Gavkhoni playa deposits. Therefore, considering the assurance of the ineffectiveness of conversion diagenesis, it is possible to achieve long-term climate at different times. Ellite and chlorite minerals in the cores of the northern part of Playa are mainly due to the weathering of the basic masses of north Playa (koh siah) and the weathering of volcanic rocks and low-grade metamorphic rocks in the Urmia-Dokhtar zone. The presence of kaolinite and the increase of phonetic minerals, especially quartz, in the two cores of G-13 and G-11 at depths of more than 3 meters indicate the presence of high-volume river flows in the region, which indicates humid and warm climatic periods. The presence of montmorillonite and ilite in the central cores of Playa with the age of more than 25000, evokes cold and temperate conditions in the late Pleistocene era in the region. The high water period in the late Pleistocene (about 18000 years ago) is marked by the precession od shore lines to land in the G-11 core with the presence of kaolinite at depths of more than 4 m. The wet conditions have gradually decreased from about 18000 to 12000 years ago. During this period, kaolinite is replaced by montmorillonite, which indicates a decrease in rainfall compared to the previous period. The predominant minerals of the early Holocene in the Gavkhoni playa are the illite and chlorite, indicating semi-dry conditions. During this time, the Montmorillonite mineral can be observed in the G-2, G-4, G-11 and G-13 cores, which is in good agreement with the delta facies at a depth of 3 to 4 meters in the G-2 and G-4 cores. The existence of a dry period about 8000 years ago is evident by the increase in evaporative minerals, the absence of kaolinite and montmorillonite, and the spread of dune sands at a depth of about 2 to 3 meters in the cores of the western and central parts is evident. 4000 years ago, the northern cores (Zayandeh Rud estuary) showed wet conditions with the presence of montmorillonite, illite and chlorite. This situation has continued for about a thousand years, after which the conditions have become a bit drier with the increase in evaporative minerals. In general, relatively low water and dry periods can be identified by increasing the rate of evaporation and expansion of dune sands and high water and wet periods can be observed by increasing the amount of debris sands as well as kaolinite and montmorillonite minerals.
Conclusion
The climate of Gavkhoni region in the post-Pleistocene has been wetter than today. This situation has continued for the past 18000 years and has led to the precession of shore lines. Since then, the early Holocene (past 12000 years) has been marked by a gradual decline in coastal humidity and backwash. With the onset of the Holocene, dry conditions gradually developed and peaked about 8000 years ago. In the middle and late Holocene, suitable humidity conditions have been gradually created and a water environment has been formed in the northern part of Playa due to the entrance of Zayandeh rud river. This situation was dominated by semi-arid conditions about a thousand years ago, which was accompanied by an increase in the evaporative deposits.

کلیدواژه‌ها [English]

  • Clay mineral
  • Paleoclimate
  • climate change
  • Gavkhoni Playa
  • Quaternary
  • پورعلی، م.، سپهر، ع.، محمودی قرایی، م. ح.، 1398. کانی شناسی رسوبات سطوح مختلف ژئومورفیک پلایای سبزوار با توجه به تغییر و تحولات اواخر هولوسن، پژوهش‌های ژئومورفولوژی کمّی، سال 8، شماره 2، صص 102-86.
  • مقصودی، م.، مقیمی، ا.، یمانی، م.، چرخابی، ا. ح.، ایرانمنش، ف.، 1392. تحلیل وقایع محیطی هولوسن دشت آزادگان براساس توالی و خصوصیات رسوب‌شناسی، پژوهش‌های ژئومورفولوژی کمّی، سال 2، شماره 1، صص 66-49.
  • صمد زاده، ر.، صمیمی هشتجین، پ.، 1397. بازسازی تکامل دیرینه ژئومورفولوژیک کواترنری حوضه آبخیز گزازچای خلخال، پژوهش‌های ژئومورفولوژی کمّی، سال 7، شماره 1، صص 161-146.
  • داودی، م.، عزیزی، ق.، مقصودی، م.، 1393. بازسازی تغییرات آب‌وهوایی هولوسن در زاگرس جنوبی: شواهد گرده‌شناسی و زغال در رسوبات دریاچه پریشان، پژوهش‌های ژئومورفولوژی کمّی، سال 3، شماره1، صص 79-65.
  • Abdi, L., Rahimpour-Bonab, H., Mirmohammad-Makki, M., Probst, J., Langeroudi, S. R., 2018. Sedimentology, mineralogy, and geochemistry of the Late Quaternary Meyghan Playa sediments, NE Arak, Iran: palaeoclimate implications. Arab J Geosciences, 11(19): 588.
  • Akarish, A. M. and El-Gohary, A. M., 2011. Provenance and Source Area Weathering Derived from the Geochemistry of Pre-Cenomanian Sandstones, East Sinai, Egypt. Journal of Applied Sciences. 11 (17): 3070-3088.
  • Anaya-Gregorio, A., Armstrong-Altrin, J. S., Machain-Castillo, M. L., Montiel-García, P. C., Ramos-Vázquez, M.A., 2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Palaeogeography. 7: 1-19.
  • Bergaya, F., Theng, B. K. G., Lagaly, G., 2006. Clays and clay minerals. Elsevier. 1246.
  • Bronk Ramsey, C. and Lee, S., 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon, 55(2-3): 720-730.
  • Brisset, E., Djamali, M., Bard, E., Borschneck, D., Gandouin, E., Garcia, M., Stevens, L., Tachikawa, K., 2018. Late Holocene hydrology of Lake Maharlou, southwest Iran, inferred from high-resolution sedimentological and geochemical analyses. J Paleolimnology. 61(1):111-128
  • Cai, W., Borlace, S., Lengaigne, M., Rensch, P. V., Collins, M., Vecchi,G., Timmermann, A., Agus, S., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change. 4: 111–116.
  • Català, A., Cacho I., Frigola J., Pena L. D., Lirer F., 2019. Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison. Climate Past. 15: 927–942.
  • Chamley, H., 1989. Clay Sedimentology. Springer-Verlag, Berlin, 623 pp.
  • ­Cohen, A. S., 2003. Paleolimnology: The history and evolution of lake systems. Oxford University press, New York.
  • De Gregorio, B. T., Stroud, R. M., Nittler, L. R., Alexander M. O., Bassim, N. D., Cody, G. D., Kilcoyne, A. L. D., Sandford, S. A., Milam, S. N., Nuevo, M., Zega, T. J., 2013. Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteorit Planet Sci,48:904–928.
  • Dianto, A., Subehi, L., Ridwansyah I., Hantoro, W S., 2019. Clay minerals in the sediments as useful paleoclimate proxy: Lake Sentarum case study, West Kalimantan, Indonesia. International Symposium on Geophysical Issues. Earth and Environmental Science. 311. 012036.
  • Dong, H. M. and Song, Y. G., 2009. Clay mineralogy and its application to paleoenvironmental reconstruction. Marine Geology and Quaternary Geology. 29(6): 119–130.
  • Fagel, N., 2007. Clay minerals, deep circulation and climate. developments in marine geology. Elsevier. 1: 139-184.
  • Garzanti, E., Al-Juboury, A. I., Zoleikhaei, Y., Vermeesch, P., Jotheri, J., Bal-Akkoca, D., Kadhim-Obaid, A., Allen, M. B., Ando, S., Limonta, M., Padoan, M., Resentini, A., Rittner, M., Vezzoli, G., 2016. The Euphrated-Tigris-Karun river system: provenance, recycling and dis persal of quartz-poor foeland-basin sediments in arid climate. Earth-Science Reviews. 162: 107-128.
  • Glenn, C. and Filippelli, G. M., 2007. Authigenic mineral formation in the marine environment: Pathways, processes and products. Deep Sea Research 54(11-13): 1-6.
  • Graham, R. C. and ƠGreen. A. T., 2010. Soil mineralogy trends in California landscapes. 154: 418-437.
  • Hernández-Hinojosa, V., Montiel-García, P. C., Armstrong-Altrin, J. S., Nagarajan, R., Kasper-Zubillaga, J. J., 2018. Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian J Earth Environ Sci, 13: 161–174.
  • Hindshaw, R. S., Tosca, N. J., Piotrowski, A. M., Tipper, E. T., 2018. Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two high Arctic catchments (Svalbard). Earth Surface Dynamics. 6: 141-161.
  • Jiwarungrueangkul, T., Liu, Z., Stattegger, K., & Sang, P. N., 2019. Reconstructing chemical weathering intensity in the Mekong River basin since the Last Glacial Maximum. Paleoc eanography and Paleoc limatology, 34: 1710–1725.
  • Kwak, K. Y., Choi, H., Cho. H. G., 2016. Paleo-environmental change during the late Holocene in the southeastern Yellow Sea, Korea. Applied Clay Science. Clay-03857. Page 1-7.
  • Ketzer, J. M., Morad, S., Amorosi, A., 2003. Predictive diagenetic clay-mineral distribution in siliciclastic rocks within a sequence stratigraphic framework. In: R. H., Worden Morad, S., (eds.), Clay cements in sandstones. International Association of Sedimentologists Special Publication. 34: 42–59.
  • Khormali, F., Abtahi, A. and Owliaie, H. R., 2005. Late Mesozoic Cenozoic clay mineral successions of southern Iran and their palaeoclimatic implications. Clay Minerals. 40: 191-203.
  • Lamy, F., Klump, J., Hebbeln, D., Wefer, G., 2000. Late Quaternary rapid climate change in northern Chile. Terra Nova, 12(1): 8 –13.
  • Linders, T., Infantes, E., Joyce, A., Karlsson, T., Ploug, H., Hassellov, M., Skold, M., Zetsche, E. M., 2018. Particle sources and transport in stratified Nordic coastal seas in the Anthropocene. Elem. Anth. 29: 1-17.
  • Liu, , Chen, M., Chen, Zh., Yan, W., 2010. Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport. Chinese Journal of Oceanology and Limnology. 28: 407-415.
  • Liu, R., Me, X., Zhang, J., Zhao, D., 2019. Characteristics of clay minerals in sediments of Hemudu area, Zhejiang, China in Holocene and their environmental significance, China Geology 1: 8-15.
  • Maccali, J., Hillaire-Marcel, C., Not, C., 2018. Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions. Polar Research, v. 37, p. 1-13.
  • Martinez-Ruiz, F., Comas, M. C., Alonso, B., 1999. Mineral Associations and geochemical indicators in Upper Miocene to Pleistocene sediments in the Alboran Basin. Proceedings og the Ocean Drilling Program, Scientific Reports, v. 161, p. 21-37.
  • Meunier, A., 2005. Clays. Springer-Verlag, Berlin, Heidelberg. 472p.
  • Moore, D. M., Reynolds, R. C., 1989. X-ray diffraction and the identification and analysis of clay minerals Oxford, Oxford University Press, 332.
  • Nichols, G., 2009. Sedimentology and stratigraphy, 2ndChichester, UK, Blackwell Science, 432p.
  • O'Geen, A., Pettygrove, S., Southard, R., Verdegaal, P., 2008. Soil-landscape model helps predict potassium supply in vineyards. California Agriculture. 62(4): 195-201.
  • Oliveria, A., Vitorino, J., Rodrigues, A., Jouanneau, J. M., Dias, J. M. A., Weber, A., 2002. Nepheloid layer dynamics of the northern Portuguese shelf: Progress Oceanography. 52: 195-213.
  • Opitz, S., Ramisch, A., IJmker, J., Lehmkuhl, F., Mischke, S., Stauch, G., Wünnemann, B., Zhang, Y., Diekmann, B., 2016. Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes. Catena 137: 203 –218.
  • Rapp, D., 2019. Ice Ages and Interglacials Measurements, Interpretation, and Models (3rd Edition). Springer International Publishing, Published in Springer Nature Switzerland.‌ 346 p.
  • Rezapour, S. and Fallahi, F., 2017. Effect of crop rotation on the changes of potassium forms and
    clay minerals under Mediterranean climatic condition. Iran Agricultural Research. 36(1): 79-90.
  • Savage, P. S., Georg, R. B., Williams, H. M., Halliday, A. N., 2013. The silicon isotope composition of the upper continental crust. Geochimica et cosmochimica acta. 109: 384-399.
  • Song, Y. G., Wang, Q. S., An, Z. S., Qiang, X. K., Dong, J. B., Chang, H., Zhang, M. S., Guo, X. H., 2017. Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin, Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology. 512: 6-55.
  • Tang, Y. J., Jia, J. Y., Xie, X. D., 2002. Environment significance of clay minerals. Earth Sci Front. 9(2): 337–344 (in Chinese)
  • Thiry, M., 2000. Paleoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Review. 49: 201-221.
  • Tucker, M. E., 1994. Sedimentary petrology, 2nd Blackwell, 272p.
  • Vanderaveroet, P., Averbuch, O., Deconinck, J. F., Chamley, H., 1999. A record of glacial/interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain-size and magnetic susceptibility. Marine Geology. 159: 79–92.
  • Velde, B., 1995. Origin and mineralogy of clays. Clays and the environment. Springer-Verlag, Berlin. 356.

Zhou, C. H. and Keeling, J., 2013. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology