پهنه‌بندی ناپایداری دامنه‌ها نسبت به حرکات واریزه‌ای با استفاده از روش الگوریتم جنگل تصادفی(مطالعه موردی: حوضه تنگراه- استان گلستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار ژئومورفولوژی دانشکده علوم جغرافیایی ، دانشگاه خوارزمی، تهران

2 دانشجوی دکتری ، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران

3 دانشجوی دکتری، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران

10.22034/gmpj.2021.131011

چکیده

حوضه آبریز تنگراه واقع در استان گلستان، یکی از زیر حوضه‌های رودخانه دوغ، یکی از نواحی تحت خطر جریان‌واریزه‌ای است. در سال‌های 1380 و 1381 طی یک بارش ناگهانی، منطقه مورد نظر سیلاب همراه با جریان واریزه‌ای جبران ناپذیری را تجربه کرده است. شناسایی مناطقی که دارای آسیب پذیری بیشتری از حرکات واریزه ای هستند، می تواند در جهت برنامه‌ریزی برای مقابله با کاهش اثرات این حوادث موثر باشد. در پژوهش حاضر برای تجزیه و تحلیل دقیق‌تر اقدام به تهیه نقشه خطر زمین‌لغزش با استفاده از الگوریتم جنگل تصادفی در این منطقه گردیده است. عوامل موثر در وقوع زمین‌لغزش‌های موجود در منطقه تنگراه در رابطه با جریان واریزه‌ای، شامل پارامترهایی نظیر شیب، جهت شیب، ارتفاع، دامنه انحناء، لیتولوژی، مجموع بارش سالانه، کاربری اراضی، فاصله از آبراهه، فاصله از گسل و فاصله از راه‌های ارتباطی می‌باشد. با استفاده از نرم افزار Mat LAB R2020a 70 درصد این داده ها بصورت تصادفی برای آموزش انتخاب شد و مابقی برای اعتبار سنجی استفاده گردیده است. ارزیابی نتایج بدست آمده از مدل الگوریتم جنگل تصادفی با استفاده از ضریب تعیین 88/0 و خطای 27/0 ایجاد شده است. الویت بندی فاکتورهای ورودی توسط الگوریتم نشان دهنده اهمیت بیشتر فاکتورها شیب و ارتفاع و فاصله از جاده در پیش بینی نهایی می باشد. براساس پهنه بندی صورت گرفته نتایج بدست آمده نشان می‌دهد 16، 15، 11، 17و 40 درصد از مساحت منطقه به ترتیب در کلاس خیلی کم، کم، متوسط، زیاد و بسیار زیاد قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Zonation of unstable slopes with respect to the debris flows using random forest algorithm (case study: Basin Tngrah Golestan Province)

نویسندگان [English]

  • Amir Karam 1
  • fariba paknejad 2
  • elham bahram abadi 3
1 Associate professor of Geomorghology, Faculty of Geographic Sciences, Kharazmi University
2 PhD Student, Faculty of Geomorghology, Kharazmi University
3 PhD Student, Faculty of Geomorghology, Kharazmi University
چکیده [English]

Abstract
In 2001 and 2002, during a sudden rainfall, the area in question experienced floods with irreparable flow of debris. . the tangrah Catchment in Golestan Province is one of Dough River sub- basins. occurrence and Storm rain falls in 2001-2002, triggered a severe debris flow which left many casualties and economic losses. One of the important causes of sediment flow rock deposits is slippery masses that occur in the basin. Therefore, identifying areas that are more vulnerable to debris movements can be effective in planning to deal with reducing the effects of these events. In the present study, for a more detailed analysis, a landslide hazard map has been prepared using a random forest algorithm in this area. Factors affecting the occurrence of landslides in the strait area in relation to the debris flow, including parameters such as slope, slope direction, altitude, curvature amplitude, lithology, total annual rainfall, land use, distance from waterway, distance from fault and distance from Are ways of communication. Using Mat LAB R2020a software, 70% of this data was randomly selected for training and the rest was used for validation. Evaluation of the results obtained from the model of random forest algorithm has been created using a coefficient of determination of 0.88 and an error of 0.27. Prioritization of input factors by the algorithm indicates the greater importance of the factors of slope, height and distance from the road in the final forecast. The secondary validation is by the ROC criterion and the area below the curve is 0.93, which indicates the estimated accuracy of the created model. Based on the zoning, the results show that 16, 15, 11, 17 and 40% of the area are in very low, low, medium, high and very high classes, respectively.
Keywords: Zonation, landslide, debris flow, Tangarah basin, Golestan province
Introduction
Debris flow is one of the most common geological hazards, often starting with landslides, and the potential energy of a slippery mass can be rapidly converted into kinetic energy. Deposits can lead to catastrophes that pose a serious threat to the lives and property of individuals and to economic development. Landslide is an integrated and often rapid volume of sedimentary material along slopes (Mahmoudi, 2007: 38). According to the definition of the Engineering Geological Society, landslide is the movement of a mass of material on a downward slope (Nasiri, 1383: 3). Therefore, these phenomena are one of the most important natural hazards that have serious casualties and financial losses around the world, especially in mountainous basins (Vilanova et al., 2010: 383) Landslides are of two types: Landslides in about one Meters is called shallow and a few meters deep. Shallow landslides contain a lot of water that occurs after heavy rainfall, but deep landslides require a longer time. When the earth's water level rises enough, the earth's block becomes unstable, causing landslides that often occur after the heaviest rains. Hence it will be a mechanism for creating a deposit (Takahashi, 124: 2007). The debris flow is actually the motion of old and new slips, and the potential energy of the slippery mass can be quickly converted into kinetic energy. Material flows can lead to catastrophes that pose a serious threat to the lives and property of individuals and to economic development. Many countries suffer from the serious risks of a deposit flow (Liang et al., 2012: 95).
Methods and material
Random forest is a modern type of rootstock that includes a host of classification and regression trees. The RF predictor model is based on averaging the results of all relevant decision trees and performs high-accuracy classification for many sets (Ebrahim Khani et al., 2011). The most important feature of random forest is its high performance in measuring the importance of a variable to determine what role each variable plays in predicting the response. The research has been prepared to prepare a map of sensitivity to debris flows and landslides in which 10 effective factors in amplitude instability have been used. After preparing 10 independent factors and landslide data, the coding of random forest algorithm in Mat LAB R2020a environment was used.

Results and discussion
To determine the appropriate number of trees, using the mean square error (MSE) criterion, first some initial values for the number of trees were determined and then the model was implemented. By examining the mean error rate and the coefficient of determination for training, the optimal model with the lowest error rate was designed. The obtained model with a coefficient of determination of 0.88 and the square of the mean squared error was 0.27 for the training stage. In order to achieve a logical and appropriate model for the strait catchment, the ROC curve has been used. ROC curvature is one of the most complete methods in providing feature determination, probabilistic identification and prediction of systems, which slightly reduces the accuracy of the model. In this rock curve evaluation, the higher the rock curve surface, the higher the model accuracy.
Studies have shown that factors such as slope, height and distance from the road have a very effective role in creating landslides in the region and factors such as distance from the waterway and distance from the fault and the direction of the slope have the least impact on landslides, respectively. slope factor is the first factor affecting instability in the region. Most debris flows originate from discrete or distributed source areas where slopes steeper than 30 ° are covered by debris or soils with low adhesionConclusion
The results of the present study are consistent with the results of researchers such as Pour Ghasemi et al. (2015) in Mazandaran and Mohammadi et al. (2017), in a part of Golestan and Talebi et al. (2016) in Sardarabad watershed, Golestan province .

کلیدواژه‌ها [English]

  • zonation
  • Landslide
  • debris flow
  • Tangarah basin
  • Golestan province
  • ابراهیم خانی،س، افضلی، م، شکوهی،ع، (1390)، پیش بینی و بررسی عوامل تصادفات جاده­ای با استفاده از الگوریتم جنگل تصادفی، فصلنامه دانش انتظامی زنجان، شماه1، سال اول، صص111-127
  • آقا نباتی، ع، (چاپ دوم 1385)، زمین شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور: تهران.
  • امیر احمدی، ا، و همکاران، (1389)، پهنه بندی خطر زمین لغزش با استفاده از روش تحلیل سلسله مراتبی (AHP) مطالعه موردی حوضه آبخیز چلاو آمل، فصلنامه علمی- پژوهشی انجمن جغرافیای ایران، سال هشتم، شماره27، صفحه 183.
  • اونق، م، و همکاران، ( 1391)، مقایسه کارایی 4 مدل کمی و نیمه کمی پهنه بندی خطر زمین لغزش در حوضه آبخیز چهل چای، استان گلستان، مجله پژوهش­های حفاظت آب و خاک، جلد نوزدهم، شماره اول، صفحه 184.
  • بنیاد مسکن انقلاب اسلامی(1385) گزارش سیل مخرب گلستان و عملکرد بنیاد.دفتر باسازی و نوسازی مناطق محروم بنیاد مسکن استان گلستان.
  • حسین­زاده، ر، و بیدخوری، ع، (چاپ دوم 1389)، سیستم­های اطلاعات جغرافیایی GIS (مبانی و آموزش نرم­افزار ArcGIS)، انتشارات جهاددانشگاهی مشهد.
  • درویش زاده، ع، (چاپ دوم 1385)، زمین شناسی ایران، موسسه انتشارات امیر کبیر: تهران . 
  • روستایی، ش، معزز، س، رحیم پور، ت، وقوع زمین لغزش در حوضه آبخیز نهندچای با استفاده از مدل ANP و تکنیک GIS، پژوهشهای ژئومورفولوژی کمی، سال هشتم، شماره2، پاییز98، صص37،23
  • سازمان جغرافیایی نیروهای مسلح، 2003، تصاویر ماهواه­ای IRS از منطقه مورد مطالعه .
  • سازمان زمین شناسی و اکتشافات معدنی کشور، نقشه­های زمین شناسی دوزین ، با مقیاس 1:100000.
  • علیزاده، امین، (چاپ سی­ام 1389)، اصول هیدرولوژی کاربردی، انتشارات آستان قدس رضوی.
  • علائی طالقانی، م، و همکاران، (1390)، پهنه بندی حساسیت دامنه­ها به ناپایداری (لغزش) در حوضه آبخیز جوانرود با استفاده از مدل آماری دو مغیره تراکم سطح، جغرافیا و توسعه شماره 22، صفحات 72-57.
  • محمودی، ف، ( چاپ اول 1386)، ژئومورفولوژی دینامیک، انتشارات دانشگاه پیام­نور: تهران.
  • کرم،ا، تورانی،م، پهنه بندی استعداد اراضی نسبت به وقوع لغزش با استفاده از روش رگرسیون خطی و فرایند تحلیل سلسه مراتبی مطالعه موردی:محور هراز تا رود هن تا رینه، نشریه تحقیقات کاربردی علوم جغرافیایی سال سیزدهم، شماره28، بهار 92، صص 190-177
  • کرم، ا، قلی زاده، آ، کاربرد مدل تاپسیس و فازی در پهنه بندی خطر جرکات ریزشی مطالعه موردی: شهرستان ماکو، پژوهشهای ژئومورفولوژی کمی، سال دوم، شماره 3، زمستان 92،صص94-75
  • مرادی و همکاران(1389). تحلیل خطر زمین لغزش در استان گلستان با استفاده از تئوری دمپستر – شیفر، پژوهش های دانش از زمین37(1):14-1
  • Jieling, W., Fan zhuang, D., Jiang, D., (2012), Assessment of Debris Flow Hazards using a Baysian network, Geomorghology171-172,94-100
  • Jakob, M., Hungr, O., Debris- flow Hazards and Related Pherpemena
  • JICA CTI Engineering International Co. Ltd., (2006), The study on flood and Debris flow in the coastal area focusing on the flood- hit Rregion In Golestan Province.
  • Dai, F.C. and C.F. Lee. 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42: 213-228
  • Lieb, M., B. Glaser and B. Huwe. 2012. Uncertainty in the spatial prediction of soil tex-ture: comparison of regression tree and Random Forest models. Geoderma, 170: 70-79
  • Takahashi, T.,(2007), Debris-flow: Mechanics, Prediction and Countermeasures, Proceedigs and Mohograghs in Engineering Wather and Earth sciences
  • Trigila, A., F. Catani, N. Casagli, G. Crosta, C. Esposito, P. Frattini, C. Iadanza, D. Lagomarsino, S. Lari, G. ScarasciaMugnozza, S. Segoni, D. Spizzichino and V. Tofani. 2012. The landslide susceptibility map of Italy at 1:1 Million scale. Geophysical Research Abstracts, 14, EGU2012-7655, 2012.
  • Dowling, C .A., Santi, P .M., (2014), Debris Flow and their toll on Human life: a Global Analysis of Debris-Flow fatalities from 1950 to 2011, hat Hazards71: 203-227.
  • Datto, f., chiarle, m., (2014), 3D Video Simulation of a Debris Flow, Hydrological Protection (CNR IRPI).
  • Liue, x., (1995), Size a Debris flow Debostition Model Experiment Approach, Environ Geol70:70-80
  • Villanueva, v .r., herrero, a .d., (2010), dendrogeomorghic analysis of flash floods in a small ungauged mountain catchment (central spain), geomorghology118: 383-392.
  • Yuan, CH., (2005), Rapainfall Duration and Debris flow Inttiated Stadies for Real-time Monitoring, Environ Geol47:715-724.
  • Yungling, j., Deyang, m., (2011), Risk Assessment of debris flow in Songne Stream, Taiwan.Engineering Geology123:100-12
  • Yun fan, t., (2007), A Debris –flow Simulation Model for the Evaluation of Protection Structures, Journal of Mountain Science Vol4 no3: 193-202.
  • H.kerle,N. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran February 2016Environmental Earth Sciences 75(3)
  • Peters, J., N. Verhoest, R. Samson, P. Boeckx and B. De Baets. 2008. Wetland vegetation distribution modelling for the identification of constraining environmental variables. Landscape Ecology, 23: 1049- 1065.
  • Simpson, G.L. and H.J.B. Birks. 2012. Tracking environmental change using lake sediments, Springer Publication, 5: 673 pp.
  • Stumpf,A. Object-oriented mapping of landslides using Random Forests, Remote Sensing of Environment, Volume 115, Issue 10, 17 October 2011, Pages 2564-2577
  • Nicodemus, K.K.(2011). Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Briefings in Bioinformatics, 12: 369-373