تهیه نقشه لندفرم‌ها و بررسی ارتباط آن با میزان خشکسالی به کمک روش ژئومورفون و مدل‌های تصمیم گیری چندمعیاره (مورد: شرق و جنوب استان فارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، ایران

2 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، ایران

3 دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، ایران

10.22034/gmpj.2021.279116.1262

چکیده

خشکسالی از جمله مخاطرات آب و هوایی است که به رغم وقوع تدریجی آن در مقیاس مکانی گسترده‌ای اثرگذار است و می‌تواند بخش بزرگی از جامعه روستایی و شهری را در معرض خطر قرار دهد، با توجه به اهمیت موضوع، هدف از این مطالعه بررسی و تعیین نواحی مستعد خشکسالی در نواحی شرق و جنوب استان فارس و ارتباط آن با نوع لندفرم ها با استفاده از روش AHP و فازی می باشد. در این مطالعه برای تعیین لندفرم های منطقه از روش ژئومورفون استفاده شد. همچنین برای تعیین وضعیت خشکسالی منطقه مورد مطالعه از روش فازی و مدل تحلیل سلسله مراتبی استفاده شد. نتایج حاصل از مقایسه دو به دوی هر یک از پارامترها نشان داد که بارندگی و عمق آب زیرزمینی با وزن‌های ۲۸/۰ و ۰۱/۰ به ترتیب با اهمیت ترین و کم اهمیت ترین پارامتر در تعیین مناطق مستعد خشکسالی در منطقه مورد مطالعه می‌باشند. نتایج حاصل از روش فازی و AHP نشان داد که بخش‌های شرقی و جنوب شرقی منطقه مستعد خشکسالی هستند. نتایج حاصل از روش ژئومورفون نشان داد که منطقه مورد مطالعه شامل ۱۰ نوع لندفرم می باشد که لندفرم نوع slope و super به ترتیب بیشترین و کمترین مساحت منطقه را شامل می شود (25 % و 2%). همچنین نتایج حاصل از ارتباط بین نوع لندفرم و خشکسالی نشان داد که در بخش‌هایی از منطقه که شامل لندفرم Flat است میزان خشکسالی در کلاس متوسط تا زیاد قرار دارد، در حالیکه لندفرم های super دارای حداقل میزان خشکسالی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of landforms using geomorphon method and its relationship with drought in the east and south of Fars province

نویسندگان [English]

  • Mohammad Mehdi Ghasemi 1
  • Mojtaba Pakparvar 2
  • marzieh mokarram 3
1 Asistant professor of water resources engineering
2 Fars Agricultural and Natural Resources Research & Education Center, AREEO
3 Department of Range and Watershed Management, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran
چکیده [English]

Extended abstract
Introduction
Severe drought events can endanger part of the community, it is important to develop a comprehensive and spatial framework for mapping drought-prone areas and reducing risk systems (Beyaztas et al., 2018). Drought is related to hydrology and meteorology. Various environmental parameters and activities related to agriculture, vegetation, human life, wildlife, and local and national economies are affected, and the effects are often intensified by agricultural, livestock, industrial and other human activities. There are various studies conducted in the field of drought, which can be found in Aher et al., 2017; Azevedo Reis et al., 2020; and Sivakumar et al., 2020. Studies have used only climatic parameters to study droughts in these studies. Other parameters such as vegetation, soil, and topography are also affected by drought. Thus, the purpose of this study is to analyze drought using these factors in the south and east of Fars province using fuzzy methods and hierarchical analysis models. Using the Geomorphon mapping method, the topography and landforms within the study area are determined. After that, the relationship between the amount of drought and the type of landform is determined. Using a relationship between landform and the amount of drought, it is possible to determine which Delandforms will be vulnerable to drought. So, the objective of this study is to determine the degree of drought in the eastern and southern parts of Fars province and to determine the type of landforms within this region by using the geomorphon method. One of the innovations of this study is how it predicted a relationship between the type of landform and the amount of drought.
Materials and methods
The study area is between longitudes 52 degrees and 66 minutes and 54 degrees and 18 minutes and latitudes 28 degrees and 1 minute and 30 degrees and 18 minutes. The study area covers an area of 23139.98 square kilometers. The maximum and minimum heights of the study area are respectively 3235 and 765 meters.
For this study, the landforms in the region were mapped using a geomorphon method. The fuzzy method and hierarchical analysis model were also used to determine the drought status of the study area. The incremental membership functionwere used to prepare a fuzzy map for each of the parameters. The incremental membership function was used to prepare the fuzzy map for the parameters Altitude, slope, groundwater depth, land use, precipitation days, precipitation, soil texture. So values greater than the critical limit n get one and values less than m get 0, and between m and n they get x-m / n-m. For the aridity index, erosion, PET, soil salinity, and distance to river parameters, the reduction membership function was used. The values above the critical limit n were 0 and below the critical limit m were 1. The values between m and n were n-x / n-m.
Then each layer was weighed using the AHP method. Weighting was done using the AHP method because each characteristic has a different effect on drought. The AHP method makes it easy to weigh parameters. AHP relies on pairwise comparisons of each parameter. Each of the factors is in the range of 1 to 9 that (Saaty & Vargas, 2001).

Results and discussion
The results of this study showed that most areas are at risk of erosion, and most of the land use in the study area is for pasture. There is more rainfall in the western part of the study area and the drought index is higher in the eastern part. Elevations are highest in the northern half of the region while evaporation is highest in the southern parts. In the southern part, groundwater depth is highest, and rainiest days are in the western part. The soil texture in most areas is loamy clay. Using pairwise comparisons of each parameter, the results revealed rainfall and groundwater depth with weights of 0.28 and 0.01 are the most and least important parameters in determining drought-prone areas in the study area, respectively. Based on the results of fuzzy and AHP methods, areas to the east and southeast are prone to drought.
Conclusion
Drought forecasting is important because the annual drought causes a lot of damage in arid and semi-arid regions of Iran and leads to reduced yields of agricultural products as well as reduced drinking water and irrigation. Thus, when identifying the vulnerable areas, including the Eastern parts (eastern regions), the necessary measures must be considered, including the cultivation of low water plants, management of dams, etc.
Keywords: Drought, Landform, Fuzzy, Hierarchical Analytical Model, Geomorphon Method, East and South of Fars Province

کلیدواژه‌ها [English]

  • Drought
  • Landform
  • Fuzzy
  • Hierarchical Analytical Model
  • Geomorphon Method
  • اکرامی، م.، فاتحی مرج، ا.، برخورداری، ج.، 1394. ارزیابی آسیب پذیری خشکسالی کشاورزی در اقلیم های خشک و نیمه خشک به کمک GIS و فرایند تحلیل سلسله مراتبی (AHP)؛ مطالعه موردی شهرستان تفت یزد. مهندسی آبیاری و آب ایران. 2(5)، 117-107.
  • درویش زاده، م.، حسینی، ر.، ابراهیمی خوسفی، ا.، 1390. پهنه بندی خطر خشکسالی مناطق خشک با استفاده از روشهای دانش مبنا در محیط GIS (مطالعه موردی: حوضه شیطور، یزد).پژوهش های اقلیم شناسی، (5)، 103-116
  • Aher, S., Shinde, S., Guha, S., and Majumder, M., 2017. Identification of drought in Dhalai river watershed using MCDM and ANN models. Journal of Earth System Science, 126(2), 21
  • Beyaztas, U., Arikan, B.B., Beyaztas, B.H., Kahya, E., 2018. Construction of prediction intervals for Palmer Drought Severity Index using bootstrap. J. Hydrol. 559, 461–470.
  • Chakraborty, A., and Joshi, P. K., 2016. Mapping disaster vulnerability in India using analytical hierarchy process. Geomatics, Natural Hazards and Risk, 7(1), 308-325
  • de Azevedo Reis, G., de Souza Filho, F. A., Nelson, D. R., Rocha, R. V., and da Silva, S. M. O., 2020. Development of a drought vulnerability index using MCDM and GIS: study case in São Paulo and Ceará, Brazil. Natural Hazards, 104(2), 1781-1799
  • Ekrami, M., Marj, A. F., Barkhordari, J., and Dashtakian, K., 2016. Drought vulnerability mapping using AHP method in arid and semiarid areas: a case study for Taft Township, Yazd Province, Iran. Environmental Earth Sciences, 75(12), 1-13
  • Ekrami, M., Marj, A.F., Barkhordari, J., and Dashtakian, K., 2016. Drought vulnerability mapping using AHP method in arid and semiarid areas: a case study for Taft township, Yazd Province, Iran. Environ. Earth Sci., 75 (12) (2016), p. 1039
  • Hao, Z., Hao, F., and Singh, V.P., 2016. A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP). J. Hydrol. 539, 1–10.
  • Heim Jr, R.R., A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc., 83 (8), pp. 1149-1166
  • Hoque, M.A.A., Phinn, S., Roelfsema, C., and Childs, I., 2018. Assessing tropical cyclone risks using geospatial techniques. Geogr., 98, pp. 22-33
  • Jasiewicz, J., and Stepinski, T. F., 2013. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147-156
  • Leeper, R.D., Bell, J.E., Vines, C., and Palecki, M., 2016. An evaluation of the North American Regional Reanalysis simulated soil moisture conditions during the 2011 to 2013 drought period. J. Hydrometeorol. 18 (2), 515–527.
  • Malczewski, J., 1999. GIS and Multicriteria Decision Analysis. John Wiley & Sons.
  • Malczewski, J., Multiple criteria decision analysis and geographic information systems. M. Ehrgott, J.R. Figueira, S. Greco (Eds.), Trends in Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science, Springer US (2010), pp. 369-395
  • Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., and Herrero-Jiménez, C.M., 2016. Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 177, 277–286.
  • Mishra, A.K., and Singh, V.P., 2010. A review of drought concepts. J. Hydrol. 391 (1–2), 202–216.
  • Palchaudhuri, M., and Biswas, S., 2016. Application of AHP with GIS in drought risk assessment for Puruliya district, India. Natural Hazards, 84(3), 1905-1920
  • Quiring, S.M., and Papakryiakou, T.N., 2003. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 118 (1–2), 49–62.
  • Rhee, J., Im, J., and Carbone, G.J., 2010. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 114 (12), 2875–2887.
  • Saaty, T.L., and Vargas, L.G., 2012. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. 175, Springer Science & Business Media.
  • Sheffield, J., Goteti, G., Wen, F., and Wood, E. F., 2004. A simulated soil moisture based drought analysis for the United States. Journal of Geophysical Research: Atmospheres, 109(D24)
  • Sivakumar, V. L., Krishnappa, R. R., and Nallanathel, M., 2020. Drought vulnerability assessment and mapping using Multi-Criteria decision making (MCDM) and application of Analytic Hierarchy process (AHP) for Namakkal District, Tamilnadu, India. Materials Today: Proceedings
  • Stepinski, T. F., & Jasiewicz, J. 2011. Geomorphons-a new approach to classification of landforms. Proceedings of geomorphometry, 2011, 109-112
  • Svoboda, M.D., Fuchs, B.A., Poulsen, C.C., and Nothwehr, J.R., 2015. The drought risk atlas: enhancing decision support for drought risk management in the United States. J. Hydrol. 526, 274–286.
  • Tonini, F., Lasinio, G.J., and Hochmair, H.H., 2012. Mapping return levels of absolute NDVI variations for the assessment of drought risk in Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 18, 564–572.
  • Wang, H., Rogers, J.C., and Munroe, D.K., 2015. Commonly used drought indices as indicators of soil moisture in China. J. Hydrometeorol. 16 (3), 1397–1408.
  • Wu, H., Qian, H., Chen, J., and Huo, C., Assessment of agricultural drought vulnerability in the Guanzhong Plain, China. Water Resour. Manag., 31 (5) (2017), pp. 1557-1574
  • Zadeh, L.A., 1996. On Fuzzy Algorithms. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh. World Scientific, pp. 127–147.
  • Zhang, X., Chen, N., Li, J., Chen, Z., and Niyogi, D., 2017. Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sens. Environ. 188, 141–163.